首页> 外文期刊>Tissue engineering, Part A >Biphasic Finite Element Modeling Reconciles Mechanical Properties of Tissue-Engineered Cartilage Constructs Across Testing Platforms
【24h】

Biphasic Finite Element Modeling Reconciles Mechanical Properties of Tissue-Engineered Cartilage Constructs Across Testing Platforms

机译:双相有限元建模在测试平台上调整组织工程软骨构建体的机械性能

获取原文
获取原文并翻译 | 示例
       

摘要

Cartilage tissue engineering is emerging as a promising treatment for osteoarthritis, and the field has progressed toward utilizing large animal models for proof of concept and preclinical studies. Mechanical testing of the regenerative tissue is an essential outcome for functional evaluation. However, testing modalities and constitutive frameworks used to evaluate in vitro grown samples differ substantially from those used to evaluate in vivo derived samples. To address this, we developed finite element (FE) models (using FEBio) of unconfined compression and indentation testing, modalities commonly used for such samples. We determined the model sensitivity to tissue radius and subchondral bone modulus, as well as its ability to estimate material parameters using the built-in parameter optimization tool in FEBio. We then sequentially tested agarose gels of 4%, 6%, 8%, and 10% weight/weight using a custom indentation platform, followed by unconfined compression. Similarly, we evaluated the ability of the model to generate material parameters for living constructs by evaluating engineered cartilage. Juvenile bovine mesenchymal stem cells were seeded (2 x 10(7) cells/mL) in 1% weight/volume hyaluronic acid hydrogels and cultured in a chondrogenic medium for 3, 6, and 9 weeks. Samples were planed and tested sequentially in indentation and unconfined compression. The model successfully completed parameter optimization routines for each testing modality for both acellular and cell-based constructs. Traditional outcome measures and the FE-derived outcomes showed significant changes in material properties during the maturation of engineered cartilage tissue, capturing dynamic changes in functional tissue mechanics. These outcomes were significantly correlated with one another, establishing this FE modeling approach as a singular method for the evaluation of functional engineered and native tissue regeneration, both in vitro and in vivo.
机译:软骨组织工程作为对骨关节炎的有希望的治疗,并且该领域已经进入利用大型动物模型来证明概念和临床前研究。再生组织的机械测试是功能评估的重要结果。然而,用于评估体外种植样品的测试方式和组成型框架基本上不同于用于在体内衍生的样品中进行评估的样品。为了解决这个问题,我们开发了有限元(FE)模型(使用FEBIO)的无束压缩和压痕测试,常用于这些样本的模态。我们确定了对组织半径和子骨髓骨模量的模型敏感性,以及它在FEBIO中使用内置参数优化工具估算材料参数的能力。然后,我们使用定制压痕平台依次测试4%,6%,8%和10%重量/重量的琼脂糖凝胶,然后是无束缚的压缩。同样,我们通过评估工程软骨评估模型为生物构建体产生材料参数的能力。将幼年牛间充质干细胞接种(2×10(7)个细胞/ ml)在1%重量/体积透明质酸水凝胶中,并在软骨培养基中培养3,6和9周。在压痕和不包含束缚的压缩中依次依次进行样品和测试。该模型成功完成了用于两种基于细胞和小区构造的每个测试模式的参数优化例程。传统的结果措施和Fe衍生的结果显示出在工程软骨组织成熟期间的材料特性的显着变化,捕获功能组织力学的动态变化。这些结果与彼此显着相关,将该FE模型方法建立为评估功能化工程和天然组织再生,体内和体内的奇异方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号