首页> 美国卫生研究院文献>Tissue Engineering. Part A >Biphasic Finite Element Modeling Reconciles Mechanical Properties of Tissue-Engineered Cartilage Constructs Across Testing Platforms
【2h】

Biphasic Finite Element Modeling Reconciles Mechanical Properties of Tissue-Engineered Cartilage Constructs Across Testing Platforms

机译:双相有限元建模协调了跨测试平台的组织工程软骨构造的机械性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cartilage tissue engineering is emerging as a promising treatment for osteoarthritis, and the field has progressed toward utilizing large animal models for proof of concept and preclinical studies. Mechanical testing of the regenerative tissue is an essential outcome for functional evaluation. However, testing modalities and constitutive frameworks used to evaluate in vitro grown samples differ substantially from those used to evaluate in vivo derived samples. To address this, we developed finite element (FE) models (using FEBio) of unconfined compression and indentation testing, modalities commonly used for such samples. We determined the model sensitivity to tissue radius and subchondral bone modulus, as well as its ability to estimate material parameters using the built-in parameter optimization tool in FEBio. We then sequentially tested agarose gels of 4%, 6%, 8%, and 10% weight/weight using a custom indentation platform, followed by unconfined compression. Similarly, we evaluated the ability of the model to generate material parameters for living constructs by evaluating engineered cartilage. Juvenile bovine mesenchymal stem cells were seeded (2 × 107 cells/mL) in 1% weight/volume hyaluronic acid hydrogels and cultured in a chondrogenic medium for 3, 6, and 9 weeks. Samples were planed and tested sequentially in indentation and unconfined compression. The model successfully completed parameter optimization routines for each testing modality for both acellular and cell-based constructs. Traditional outcome measures and the FE-derived outcomes showed significant changes in material properties during the maturation of engineered cartilage tissue, capturing dynamic changes in functional tissue mechanics. These outcomes were significantly correlated with one another, establishing this FE modeling approach as a singular method for the evaluation of functional engineered and native tissue regeneration, both in vitro and in vivo.
机译:软骨组织工程学正在成为一种有望治疗骨关节炎的方法,该领域已朝着利用大型动物模型进行概念验证和临床前研究的方向发展。再生组织的机械测试是功能评估的重要结果。但是,用于评估体外生长样品的测试方法和组成框架与用于评估体内衍生样品的测试方法和组成框架有很大不同。为了解决这个问题,我们开发了无限制压缩和压痕测试的有限元(FE)模型(使用FEBio),这些模型通常用于此类样品。我们确定了模型对组织半径和软骨下骨模量的敏感性,以及使用FEBio中内置的参数优化工具估算材料参数的能力。然后,我们使用定制的压痕平台依次测试了4%,6%,8%和10%重量/重量的琼脂糖凝胶,然后进行无限制压缩。同样,我们通过评估工程软骨来评估模型为活动构造生成材料参数的能力。在1%重量/体积的透明质酸水凝胶中以2××10 7 细胞/ mL接种幼小牛间充质干细胞,并在软骨形成培养基中培养3、6和9周。依次对样品进行压痕和无限制压缩的计划和测试。该模型成功完成了针对无细胞和基于细胞构建体的每种测试方式的参数优化例程。传统的结果测量和FE得出的结果显示,在工程软骨组织成熟期间,材料特性发生了显着变化,从而捕获了功能组织力学的动态变化。这些结果彼此之间显着相关,从而建立了这种有限元建模方法,作为一种在体外和体内评估功能改造和天然组织再生的单一方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号