...
首页> 外文期刊>Ultramicroscopy >Quantitative analysis of spectroscopic low energy electron microscopy data: High-dynamic range imaging, drift correction and cluster analysis
【24h】

Quantitative analysis of spectroscopic low energy electron microscopy data: High-dynamic range imaging, drift correction and cluster analysis

机译:光谱低能电子显微镜数据的定量分析:高动态范围成像,漂移校正和聚类分析

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

For many complex materials systems, low-energy electron microscopy (LEEM) offers detailed insights into morphology and crystallography by naturally combining real-space and reciprocal-space information. Its unique strength, however, is that all measurements can easily be performed energy-dependently. Consequently, one should treat LEEM measurements as multi-dimensional, spectroscopic datasets rather than as images to fully harvest this potential. Here we describe a measurement and data analysis approach to obtain such quantitative spectroscopic LEEM datasets with high lateral resolution. The employed detector correction and adjustment techniques enable measurement of true reflectivity values over four orders of magnitudes of intensity. Moreover, we show a drift correction algorithm, tailored for LEEM datasets with inverting contrast, that yields sub-pixel accuracy without special computational demands. Finally, we apply dimension reduction techniques to summarize the key spectroscopic features of datasets with hundreds of images into two single images that can easily be presented and interpreted intuitively. We use cluster analysis to automatically identify different materials within the field of view and to calculate average spectra per material. We demonstrate these methods by analyzing bright-field and dark-field datasets of few-layer graphene grown on silicon carbide and provide a high-performance Python implementation.
机译:对于许多复杂的材料系统,低能量电子显微镜(Leem)通过自然地结合实际空间和互惠空间信息,详细介绍了形态和晶体学。然而,其独特的强度是所有测量都可以依赖于能量的能量。因此,应该将Leem测量值视为多维光谱数据集,而不是作为图像来完全收获这种潜力。在这里,我们描述了具有高横向分辨率的定量光谱leem数据集的测量和数据分析方法。所采用的检测器校正和调整技术使得能够在四个强度级数上测量真正的反射率值。此外,我们展示了一种漂移校正算法,为具有反相对比度的leem数据集而定制,从而产生了没有特殊计算需求的子像素精度。最后,我们应用尺寸减少技术,以将数据集的关键光谱特征与数百图像分为两个可以容易地呈现和解释直观的单个图像。我们使用集群分析自动识别视野中的不同材料,并计算每个材料的平均光谱。我们通过分析在碳化硅上生长的几层石墨烯的明亮场和暗场数据集来证明这些方法,并提供高性能的Python实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号