...
首页> 外文期刊>Polymers for advanced technologies >Development of multifunctional polydimethylsiloxane (PDMS)‐epoxy‐zinc oxide nanocomposite coatings for marine applications
【24h】

Development of multifunctional polydimethylsiloxane (PDMS)‐epoxy‐zinc oxide nanocomposite coatings for marine applications

机译:船舶应用的多官能聚二甲基硅氧烷(PDMS) - 氧基 - 氧化锌纳米复合涂层的研制

获取原文
获取原文并翻译 | 示例
           

摘要

> Multifunctional epoxy‐polydimethylsiloxane nanocomposite coatings with antifouling and anticorrosion characteristics have been developed via in situ polymerization method at different loading (1, 3, and 6.5?wt.%) of ZnO nanoparticles to cater marine applications. A detailed comparative analysis has been carried out between epoxy‐polydimethylsiloxane control (EPC) and ZnO‐reinforced coatings to determine the influence of ZnO loading on various properties. The incorporation of ZnO in EPC led to increase in root mean square (RMS) roughness to 126.75?nm and improved hydrophobicity showing maximum contact angle of 123.5° with low surface energy of 19.75?mN/m of nanocomposite coating as compared with control coating. The differential scanning calorimetry (DSC) result indicated improved glass transition temperature of nanocomposite coatings with highest T g obtained at 83.69°C in case of 1?wt.% loading of ZnO. The increase in hydrophobicity of the system was accompanied by upgraded anticorrosion performance exhibiting 98.8% corrosion inhibition efficiency (CIE) as compared with control coating and lower corrosion rate of 0.12?×?10 ?3 ?mm/year. The Taber abrasion resistance and pull‐off adhesion strength results indicated an increment of 34.7% and 150.7%, respectively, in case of nanocomposite coating as compared with the control coating. The hardness of nanocomposite coatings was also improved, and maximum hardness was found to be 65.75?MPa for nanocomposite coating with 1?wt.% of ZnO. Our study showed that the nanocomposite coating was efficient in inhibiting accumulation of marine bacteria and preventing biofouling for more than 8?months. The developed environment‐friendly and efficient nanocomposite material has a promising future as a high‐performance anticorrosive and antifouling coating for marine applications.
机译: > 通过在不同负载(1,3和6.5·%)的ZnO纳米粒子的不同负载(1,3和6.5·重量%)中,通过在原位聚合方法中通过ZnO纳米粒子的原位聚合方法开发了具有防污和防腐特性的多官能环氧 - 聚二甲基硅氧烷纳米复合涂层。在环氧 - 聚二甲基硅氧烷对照(EPC)和ZnO增强涂层之间进行了详细的比较分析,以确定ZnO负载对各种性质的影响。在EPC中的ZnO掺入均方根(RMS)粗糙度的增加至126.75Ω·NM,并改善疏水性,显示与对照涂层相比的纳米复合涂层的低表面能为123.5°的最大接触角为12.75°。差分扫描量热法(DSC)结果表明,纳米复合涂层的玻璃化转变温度最高 t g 在83.69°C的情况下在1℃下获得。%荷诺%载荷。与对照涂层相比,系统疏水性的增加伴随着升级的防腐性能,呈现出98.8%的腐蚀抑制效率(CIE),较低的腐蚀速度为0.12Ω×10 ?3 ?mm /年。与对照涂层相比,Taber耐磨性和拉出粘合强度分别表示纳米复合涂层的情况下,分别为34.7%和150.7%。纳米复合涂层的硬度也得到改善,并且最大硬度被发现为65.75μl纳米复合涂层的65.75mPa。ZnO的%。我们的研究表明,纳米复合涂层有效地抑制海洋细菌的积累,并预防生物污染超过8个月。开发的环保和高效的纳米复合材料具有很有希望的未来,作为海洋应用的高性能防腐和防污涂层。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号