...
首页> 外文期刊>Plasma Science & Technology >Structure-preserving geometric particle-in-cell methods for Vlasov-Maxwell systems
【24h】

Structure-preserving geometric particle-in-cell methods for Vlasov-Maxwell systems

机译:用于Vlasov-Maxwell系统的结构保留的几何粒子电池方法

获取原文
获取原文并翻译 | 示例

摘要

Recent development of structure-preserving geometric particle-in-cell (PIC) algorithms for Vlasov-Maxwell systems is summarized. With the arrival of 100 petaflop and exaflop computing power, it is now possible to carry out direct simulations of multi-scale plasma dynamics based on first-principles. However, standard algorithms currently adopted by the plasma physics community do not possess the long-term accuracy and fidelity required for these large-scale simulations. This is because conventional simulation algorithms are based on numerically solving the underpinning differential (or integro-differential) equations, and the algorithms used in general do not preserve the geometric and physical structures of the systems, such as the local energy-momentum conservation law, the symplectic structure, and the gauge symmetry. As a consequence, numerical errors accumulate coherently with time and long-term simulation results are not reliable. To overcome this difficulty and to harness the power of exascale computers, a new generation of structure-preserving geometric PIC algorithms have been developed. This new generation of algorithms utilizes modern mathematical techniques, such as discrete manifolds, interpolating differential forms, and non-canonical symplectic integrators, to ensure gauge symmetry, space-time symmetry and the conservation of charge, energy-momentum, and the symplectic structure. These highly desired properties are difficult to achieve using the conventional PIC algorithms. In addition to summarizing the recent development and demonstrating practical implementations, several new results are also presented, including a structure-preserving geometric relativistic PIC algorithm, the proof of the correspondence between discrete gauge symmetry and discrete charge conservation law, and a reformulation of the explicit non-canonical symplectic algorithm for the discrete Poisson bracket using the variational approach. Numerical examples are given to verify the advantages of the structure-preserving geometric PIC algorithms in comparison with the conventional PIC methods.
机译:总结了VLASOV-MAXWELL系统的结构保存的几何粒子内(PIC)算法的最新发展。随着100 PETAFLOP和EXAFLOP计算能力的到来,现在可以根据第一原理进行多尺度等离子体动力学进行直接模拟。然而,等离子物理界目前采用的标准算法没有这些大规模模拟所需的长期准确性和保真度。这是因为传统的仿真算法基于数值求解的基础差分(或积分差分)方程,并且通常使用的算法不保留系统的几何和物理结构,例如当地能量动量保守法,辛结构和仪表对称性。结果,随着时间和长期仿真结果连续累积数值误差是不可靠的。为了克服这种困难并利用Exascale计算机的力量,已经开发出了新一代的结构保留的几何图片算法。该新一代算法利用现代数学技术,例如离散歧管,内插差异形式和非规范杂项集成商,以确保计量对称性,时空对称性和电荷,能量动量和辛结构的守恒。使用传统的PIC算法难以实现这些高度期望的特性。除了总结最近的发展和展示实际实现之外,还提出了几种新结果,包括保留结构保留的几何相对论图片PIC算法,证明了离散量标对称和离散电荷保守法之间的对应关系,以及明确的重新制定不同分析方法的离散泊松支架的非规范辛算法。给出了与传统照片方法相比验证了结构保留的几何图片算法的优点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号