首页> 外文期刊>等离子体科学和技术(英文版) >Structure-preserving geometric particle-in-cell methods for Vlasov-Maxwell systems
【24h】

Structure-preserving geometric particle-in-cell methods for Vlasov-Maxwell systems

机译:Vlasov-Maxwell系统的保留结构的几何单元格粒子方法

获取原文
获取原文并翻译 | 示例
       

摘要

Recent development of structure-preserving geometric particle-in-cell (PIC) algorithms for Vlasov-Maxwell systems is summarized.With the arrival of 100 petaflop and exaflop computing power,it is now possible to carry out direct simulations of multi-scale plasma dynamics based on first-principles.However,standard algorithms currently adopted by the plasma physics community do not possess the long-term accuracy and fidelity required for these large-scale simulations.This is because conventional simulation algorithms are based on numerically solving the underpinning differential (or integro-differential) equations,and the algorithms used in general do not preserve the geometric and physical structures of the systems,such as the local energy-momentum conservation law,the symplectic structure,and the gauge symmetry.As a consequence,numerical errors accumulate coherently with time and long-term simulation results are not reliable.To overcome this difficulty and to harness the power of exascale computers,a new generation of structure-preserving geometric PIC algorithms have been developed.This new generation of algorithms utilizes modern mathematical techniques,such as discrete manifolds,interpolating differential forms,and non-canonical symplectic integrators,to ensure gauge symmetry,space-time symmetry and the conservation of charge,energy-momentum,and the symplectic structure.These highly desired properties are difficult to achieve using the conventional PIC algorithms.In addition to summarizing the recent development and demonstrating practical implementations,several new results are also presented,including a structure-preserving geometric relativistic PIC algorithm,the proof of the correspondence between discrete gauge symmetry and discrete charge conservation law,and a reformulation of the explicit non-canonical symplectic algorithm for the discrete Poisson bracket using the variational approach.Numerical examples are given to verify the advantages of the structure-preserving geometric PIC algorithms in comparison with the conventional PIC methods.
机译:总结了最近在Vlasov-Maxwell系统中保存结构的几何粒子算法(PIC)的最新进展。随着100 petaflop和exaflop计算能力的到来,现在有可能进行多尺度等离子体动力学的直接仿真。然而,等离子物理学界目前采用的标准算法不具备这些大规模仿真所需的长期准确性和逼真度,这是因为常规仿真算法基于数值求解基础微分(或积分微分方程),并且通常使用的算法不能保留系统的几何和物理结构,例如局部能量动量守恒定律,辛结构和量规对称性。结果,会产生数值误差与时间连贯地积累,长期的仿真结果是不可靠的。要克服这一困难并利用exasca的力量在计算机上,已经开发出了新一代的结构保持几何PIC算法。这种新一代算法利用了现代数学技术,例如离散流形,内插微分形式和非规范辛积分器,以确保轨规对称性,空间-时间对称性以及电荷守恒,能量动量和辛结构。使用传统的PIC算法很难实现这些高度期望的特性。除了总结最近的发展并说明实际的实现方式之外,还提出了一些新的结果,包括保结构几何相对论PIC算法,离散量规对称性和离散电荷守恒律之间的对应关系证明,以及使用变分法对离散泊松括号的显式非规范辛算法的重新表述。验证结构的优势-与传统的PIC方法相比,保留了几何PIC算法。

著录项

  • 来源
    《等离子体科学和技术(英文版)》 |2018年第11期|1-21|共21页
  • 作者单位

    School of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China;

    School of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China;

    Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, United States of America;

    School of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China;

  • 收录信息 中国科学引文数据库(CSCD);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-19 04:27:32
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号