首页> 外文学位 >Regionally Implicit Discontinuous Galerkin Methods for Solving the Relativistic Vlasov-Maxwell System Submitted to Iowa State University
【24h】

Regionally Implicit Discontinuous Galerkin Methods for Solving the Relativistic Vlasov-Maxwell System Submitted to Iowa State University

机译:提交爱荷华州立大学的相对论性Vlasov-Maxwell系统的区域隐式不连续Galerkin方法

获取原文
获取原文并翻译 | 示例

摘要

The relativistic Vlasov-Maxwell system (RVM) models the behavior of collisionless plasma, where electrons and ions interact via the electromagnetic fields they generate. In the RVM system, electrons could accelerate to significant fractions of the speed of light. An idea that is actively being pursued by several research groups around the globe is to accelerate electrons to relativistic speeds by hitting a plasma with an intense laser beam. As the laser beam passes through the plasma it creates plasma wakes, much like a ship passing through water, which can trap electrons and push them to relativistic speeds. Such setups are known as laser wakefield accelerators, and have the potential to yield particle accelerators that are significantly smaller than those currently in use. Ultimately, the goal of such research is to harness the resulting electron beams to generate electromagnetic waves that can be used in medical imaging applications.;High-order accurate numerical discretizations of kinetic Vlasov plasma models are very effective at yielding low-noise plasma simulations, but are computationally expensive to solve because of the high dimensionality. In addition to the general difficulties inherent to numerically simulating Vlasov models, the relativistic Vlasov-Maxwell system has unique challenges not present in the non-relativistic case. One such issue is that operator splitting of the phase gradient leads to potential instabilities, thus we require an alternative to operator splitting of the phase.;The goal of the current work is to develop a new class of high-order accurate numerical methods for solving kinetic Vlasov models of plasma. The main discretization in configuration space is handled via a high-order finite element method called the discontinuous Galerkin method (DG). One difficulty is that standard explicit time-stepping methods for DG suffer from time-step restrictions that are significantly worse than what a simple Courant-Friedrichs-Lewy (CFL) argument requires. The maximum stable time-step scales inversely with the highest degree in the DG polynomial approximation space and becomes progressively smaller with each added spatial dimension. In this work, we overcome this difficulty by introducing a novel time-stepping strategy: the regionally-implicit discontinuous Galerkin (RIDG) method. The RIDG is method is based on an extension of the Lax-Wendroff DG (LxW-DG) method, which previously had been shown to be equivalent (for linear constant coefficient problems) to a predictor-corrector approach, where the prediction is computed by a space-time DG method (STDG). The corrector is an explicit method that uses the space-time reconstructed solution from the predictor step. In this work, we modify the predictor to include not just local information, but also neighboring information. With this modification, we show that the stability is greatly enhanced; we show that we can remove the polynomial degree dependence of the maximum time-step and show vastly improved time-steps in multiple spatial dimensions. Upon the development of the general RIDG method, we apply it to the non-relativistic 1D1V Vlasov-Poisson equations and the relativistic 1D2V Vlasov-Maxwell equations. For each we validate the high-order method on several test cases. In the final test case, we demonstrate the ability of the method to simulate the acceleration of electrons to relativistic speeds in a simplified test case.
机译:相对论的Vlasov-Maxwell系统(RVM)对无碰撞等离子体的行为进行建模,其中电子和离子通过它们产生的电磁场相互作用。在RVM系统中,电子可以加速到光速的很大一部分。全球数个研究小组都在积极地追求一种想法,即通过用强烈的激光束撞击等离子体,将电子加速到相对论的速度。当激光束穿过等离子体时,会产生等离子体唤醒,就像一艘船穿过水一样,它可以捕获电子并将其推向相对论速度。这种装置被称为激光尾场加速器,具有产生比目前使用的粒子加速器小得多的粒子加速器的潜力。最终,此类研究的目的是利用所产生的电子束产生可用于医学成像应用的电磁波。动态Vlasov等离子体模型的高阶精确数值离散化在产生低噪声等离子体模拟方面非常有效,但由于维数高,解决起来计算量大。除了数值模拟Vlasov模型固有的一般困难外,相对论性Vlasov-Maxwell系统还具有非相对论性情况下不存在的独特挑战。这样的问题是相位梯度的算子分裂会导致潜在的不稳定性,因此我们需要一种替代方法来进行相位算子分裂。;当前工作的目标是开发一种新的高阶精确数值方法来求解血浆动力学Vlasov模型。配置空间中的主要离散化是通过称为不连续Galerkin方法(DG)的高阶有限元方法处理的。困难之一是DG的标准显式时间步长方法受时间步长限制的影响,远比简单的Courant-Friedrichs-Lewy(CFL)论证所要求的时间差。最大稳定时间步长在DG多项式逼近空间中以最高的度成反比,并且在每个增加的空间维度上逐渐变小。在这项工作中,我们通过引入一种新颖的时间步长策略克服了这一困难:区域隐式不连续Galerkin(RIDG)方法。 RIDG方法基于Lax-Wendroff DG(LxW-DG)方法的扩展,该方法先前已显示(对于线性常数系数问题)等效于预测器-校正器方法,其中通过时空DG方法(STDG)。校正器是一种显式方法,它使用来自预测器步骤的时空重构解决方案。在这项工作中,我们修改了预测变量,使其不仅包含本地信息,还包含邻近信息。通过此修改,我们表明稳定性得到了极大提高;我们表明,我们可以消除最大时间步长的多项式相关性,并在多个空间维度上显示出大大改善的时间步长。随着通用RIDG方法的发展,我们将其应用于非相对论的1D1V Vlasov-Poisson方程和相对论的1D2V Vlasov-Maxwell方程。对于每一个,我们在几个测试用例上验证高阶方法。在最终的测试案例中,我们演示了该方法在简化的测试案例中模拟电子加速到相对论速度的能力。

著录项

  • 作者

    Guthrey, Pierson Tyler.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Applied mathematics.;Physics.;Aerospace engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 119 p.
  • 总页数 119
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:38:50

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号