...
首页> 外文期刊>Physica, E. Low-dimensional systems & nanostructures >Effect of entrapped Ni nanoparticles on the electrical conductivity and current-induced breakdown of MWCNTs
【24h】

Effect of entrapped Ni nanoparticles on the electrical conductivity and current-induced breakdown of MWCNTs

机译:捕获的Ni纳米粒子对MWCNT的电导率和电流诱导的影响的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Despite many reports on electrical characteristics of carbon nanotubes and the role of defects on their electrical behavior, no special study has been done to understand the influence of entrapped catalyst nanoparticles on the electrical characteristics of CNTs. Since entrapment of Catalytic nano particles within the structure of nanotubes is inevitable in CVD and PECVD growth methods, it is appriciable to realize the effect of these nano-clusters on the electrical parameters of CNTs. Here, we investigated the effect of entrapped Ni nano-catalysts on the resistance and breakdown of MWCNTs grown by the DC-PECVD method. The studied nanotubes ruptured in a few seconds while carrying electric current with current densities lower than that theoretically predicted for ideal CNTs. We demonstrate that entrapped Ni nano particles have the main role in early structural breakdown due to their catalytic behavior. Raman Spectroscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy analyses are exploited to corroborate the existence of Ni nano-clusters and their effects on electrical behavior of CNTs. In addition to undesirable latitudinal rupture of CNTs, Ni grains have the capability to unzip CNTs along their axes in the case of applying unidirectional electric field.
机译:尽管许多关于碳纳米管的电特性以及缺陷对其电气行为的作用的报道,但已经没有完成特殊研究以了解捕获的催化剂纳米颗粒对CNT的电气特性的影响。由于在CVD和PECVD生长方法中纳入纳米管结构内的催化纳米颗粒是不可避免的,因此可以易于实现这些纳米簇对CNT的电参数的影响。在这里,我们研究了陷阱Ni纳米催化剂对DC-PECVD方法生长的MWCNT的抗性和分解的影响。研究的纳米管在几秒钟内破裂,同时承载电流,电流低于理论上预测理想的CNT的电流。我们证明捕获的Ni纳米颗粒由于其催化行为而在早期结构崩溃中具有主要作用。利用拉曼光谱,透射电子显微镜和能量分散X射线光谱分析分析,以证实Ni纳米簇的存在及其对CNT的电气行为的影响。除了不希望的CNT的纬度破裂之外,在施加单向电场的情况下,Ni晶粒在施加单向电场的情况下具有沿着它们的轴解压缩的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号