首页> 外文期刊>Physical biology >Nanoscale insight into silk-like protein self-assembly: effect of design and number of repeat units
【24h】

Nanoscale insight into silk-like protein self-assembly: effect of design and number of repeat units

机译:纳米级洞察丝状蛋白质自我组装:设计和重复单位数量的影响

获取原文
获取原文并翻译 | 示例
           

摘要

By means of replica exchange molecular dynamics simulations we investigate how the length of a silk-like, alternating diblock oligopeptide influences its secondary and quaternary structure. We carry out simulations for two protein sizes consisting of three and five blocks, and study the stability of a single protein, a dimer, a trimer and a tetramer. Initial configurations of our simulations are beta-roll and beta-sheet structures. We find that for the triblock the secondary and quaternary structures upto and including the tetramer are unstable: the proteins melt into random coil structures and the aggregates disassemble either completely or partially. We attribute this to the competition between conformational entropy of the proteins and the formation of hydrogen bonds and hydrophobic interactions between proteins. This is confirmed by our simulations on the pentablock proteins, where we find that, as the number of monomers in the aggregate increases, individual monomers form more hydrogen bonds whereas their solvent accessible surface area decreases. For the pentablock beta-sheet protein, the monomer and the dimer melt as well, although for the beta-roll protein only the monomer melts. For both trimers and tetramers remain stable. Apparently, for these the entropy loss of forming beta-rolls and beta-sheets is compensated for in the free-energy gain due to the hydrogen-bonding and hydrophobic interactions. We also find that the middle monomers in the trimers and tetramers are conformationally much more stable than the ones on the top and the bottom. Interestingly, the latter are more stable on the tetramer than on the trimer, suggesting that as the number of monomers increases protein-protein interactions cooperatively stabilize the assembly. According to our simulations, the beta-roll and beta-sheet aggregates must be approximately equally stable.
机译:通过复制交换分子动力学模拟,我们研究了丝绸状的长度,交替二嵌段寡肽的长度如何影响其二级和四元结构。我们对由三个和五个嵌段组成的两种蛋白质尺寸进行模拟,研究单个蛋白质,二聚体,三聚体和四聚体的稳定性。我们的模拟的初始配置是Beta-Lord和Beta-Sport结构。我们发现,对于三嵌段,次级和季族结构均匀,包括四聚体是不稳定的:蛋白质熔化成随机线圈结构,并且聚集体拆分完全或部分。我们将其归因于蛋白质构象熵之间的竞争以及蛋白质之间形成氢键和疏水相互作用。这是通过对Pentablock蛋白的模拟来证实,在那里我们发现,随着聚集体中的单体的数量增加,个体单体形式形成更多的氢键,而它们的溶剂可接近的表面积降低。对于Pentablockβ-片状蛋白质,也是单体和二聚体熔体,尽管对于β-卷蛋白,仅仅是单体熔体。对于两个三聚体和四聚体保持稳定。显然,由于这些,由于氢键合和疏水相互作用,在自由能增益中补偿形成β卷和β-片材的熵损失。我们还发现三聚体和四聚体中的中间单体都是比顶部和底部的细胞更稳定的更稳定。有趣的是,后者在四聚体上比三聚体更稳定,表明随着单体的数量增加了蛋白质 - 蛋白质相互作用,适合稳定组件。根据我们的模拟,β-卷和β-薄片聚集体必须近似稳定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号