首页> 外文学位 >Engineered Bacterial Metal-binding Proteins for Nanoscale Self-assembly and heavy Metal Tolerance.
【24h】

Engineered Bacterial Metal-binding Proteins for Nanoscale Self-assembly and heavy Metal Tolerance.

机译:工程化细菌金属结合蛋白,可实现纳米级自组装和重金属耐受性。

获取原文
获取原文并翻译 | 示例

摘要

Implementing biological principles in material synthesis and assembly is one way to expand our abilities to efficiently assemble nanoscale materials and devices. Specifically, recent advances in identifying peptides that bind inorganic materials with high affinity and specificity has spurred investigation of protein models for nanoscale inorganic assembly. This dissertation presents the results of my studies of several E. coli proteins engineered to bind inorganic materials through simple peptide motifs. I demonstrate that these proteins modulate the self-assembly of DNA-based nanostructures and can introduce heavy metal tolerance into metal-sensitive bacteria. Chapter 2 explores use of the engineered F plasmid DNA relaxase/helicase TraI for the self-assembly of complex DNA-protein-gold nanostructures. The full-length protein is engineered with a gold binding motif at an internal permissive site (TraI369GBP1-7x), while a truncated version of TraI is engineered with the same gold binding motif at the C-terminus (TraI361GBP1-7x). Both constructs bind gold nanoparticles while maintaining their DNA binding activity, and transmission electron microscopy reveals TraI369GBP1-7x utilizes its non-specific DNA binding activity to decorate single-stranded and double-stranded DNA with gold nanoparticles. The self assembly principles demonstrated in this work will be fundamental to constructing higher ordered hybrid nanostructures through DNA-protein-nanoparticle interactions. Chapter 3 studies the effects of expressing inorganic binding peptides within cells. I identified a silver binding peptide that, when fused to the periplasmic maltose binding protein, protects E. coli from silver toxicity in batch culture and reduces silver ions to silver nanoparticles within the bacterial periplasm. Engineered metal-ion tolerant microorganisms such as this E. coli could potentially be used in applications ranging from remediation to interrogation of biomolecule-metal interactions in vivo. Further implications of these findings, and possible directions for future study, are discussed in Chapter 4.
机译:在材料合成和组装中实施生物学原理是扩大我们有效组装纳米级材料和装置的能力的一种方法。特别地,鉴定与高亲和力和特异性结合无机材料的肽的最新进展刺激了对用于纳米级无机组装的蛋白质模型的研究。本文介绍了我对几种通过简单的肽基序与无机材料结合的大肠杆菌蛋白质的研究结果。我证明这些蛋白质可调节基于DNA的纳米结构的自组装,并可将重金属耐受性引入对金属敏感的细菌中。第2章探讨了工程F质粒DNA松弛酶/解旋酶TraI在复杂DNA-蛋白质-金纳米结构的自组装中的用途。全长蛋白在内部允许位点(TraI369GBP1-7x)设计有金结合基序,而TraI的截短版本在C端(TraI361GBP1-7x)则设计有相同的金结合基序。两种构建体均在保持其DNA结合活性的同时结合了金纳米颗粒,并且透射电子显微镜显示TraI369GBP1-7x利用其非特异性DNA结合活性用金纳米颗粒修饰了单链和双链DNA。这项工作中展示的自组装原理将是通过DNA-蛋白质-纳米粒子相互作用构建更高序的杂化纳米结构的基础。第三章研究了在细胞内表达无机结合肽的作用。我鉴定了一种银结合肽,当与周质麦芽糖结合蛋白融合时,可以保护大肠杆菌免受分批培养中的银毒性,并且可以将银离子还原为细菌周质中的银纳米颗粒。工程化的耐受金属离子的微生物(例如此大肠埃希氏菌)可以潜在地用于从补救到体内生物分子-金属相互作用的询问等应用。这些发现的进一步含义以及未来研究的可能方向在第4章中进行了讨论。

著录项

  • 作者

    Hall Sedlak, Ruth Amanda.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Biology Microbiology.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 102 p.
  • 总页数 102
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号