首页> 外文期刊>Philosophical Transactions of the Royal Society of London, Series B. Biological Sciences >From head to tail: a neuromechanical model of forward locomotion in Caenorhabditis elegans
【24h】

From head to tail: a neuromechanical model of forward locomotion in Caenorhabditis elegans

机译:从头到尾:秀丽隐杆线虫的前向运动的神经力学模型

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

With 302 neurons and a near-complete reconstruction of the neural and muscle anatomy at the cellular level, Caenorhabditis elegans is an ideal candidate organism to study the neuromechanical basis of behaviour. Yet despite the breadth of knowledge about the neurobiology, anatomy and physics of C. elegans, there are still a number of unanswered questions about one of its most basic and fundamental behaviours: forward locomotion. How the rhythmic pattern is generated and propagated along the body is not yet well understood. We report on the development and analysis of a model of forward locomotion that integrates the neuroanatomy, neurophysiology and body mechanics of the worm. Our model is motivated by experimental analysis of the structure of the ventral cord circuitry and the effect of local body curvature on nearby motoneurons. We developed a neuroanatomically grounded model of the head motoneuron circuit and the ventral nerve cord circuit. We integrated the neural model with an existing biomechanical model of the worm's body, with updated musculature and stretch receptors. Unknown parameters were evolved using an evolutionary algorithm to match the speed of the worm on agar. We performed 100 evolutionary runs and consistently found electrophysiological configurations that reproduced realistic control of forward movement. The ensemble of successful solutions reproduced key experimental observations that they were not designed to fit, including the wavelength and frequency of the propagating wave. Analysis of the ensemble revealed that head motoneurons SMD and RMD are sufficient to drive dorsoventral undulations in the head and neck and that short-range posteriorly directed proprioceptive feedback is sufficient to propagate the wave along the rest of the body.
机译:患有302个神经元和近乎完全重建细胞水平的神经和肌肉解剖学,Caenorhabditis elegans是一种理想的候选人,用于研究行为的神经力学基础。然而,尽管关于秀丽隐杆线虫的神经生物学,解剖学和物理学的知识,但关于其最基本和基本行为之一的仍有许多未经答复的问题:前瞻性机器。如何沿着身体产生和传播节奏模式尚未得到很好的理解。我们报告了对蠕虫神经肿瘤,神经生理学和机械机械的前向运动模型的开发和分析。我们的模型是通过对腹帘线电路结构的实验分析和局部体曲率对附近的运动神经元的影响。我们开发了头部运动神经元电路和腹侧脐带电路的神经杀菌接地模型。我们用蠕虫体的现有生物力学模型整合了神经模型,具有更新的肌肉组织和拉伸受体。使用进化算法演化未知参数以匹配琼脂上的蠕虫的速度。我们进行了100个进化的运行,一致地发现了转发前向运动的现实控制的电生理配置。成功解决方案的集合再现了它们不设计成适合的关键实验观察,包括传播波的波长和频率。对合奏的分析显示,头部运动神经元SMD和RMD足以驱动头部和颈部的背轴长度,并且短程后向引导的预防反馈足以沿着身体其余的波传播波。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号