...
首页> 外文期刊>Surface review and letters >TiO2/GRAPHENE OXIDE HETEROSTRUCTURES FOR GAS-SENSING: INTERACTION OF NITROGEN DIOXIDE WITH THE PRISTINE AND NITROGEN MODIFIED NANOSTRUCTURES INVESTIGATED BY DFT
【24h】

TiO2/GRAPHENE OXIDE HETEROSTRUCTURES FOR GAS-SENSING: INTERACTION OF NITROGEN DIOXIDE WITH THE PRISTINE AND NITROGEN MODIFIED NANOSTRUCTURES INVESTIGATED BY DFT

机译:用于气体传感的TiO2 /石墨烯氧化物异质结构:二氧化氮与氮素改性纳米结构的相互作用,DFT研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The gas response of metal oxide-based sensors depends strongly on its adsorption properties. To explore the potential sensing capability of pristine and nitrogen modified TiO2/graphene oxide (GO) heterostructures, the adsorption of NO2 molecule on the N-doped nanocomposites was investigated using density functional theory (DFT) calculations. Six possible configurations were simulated based on the estimated adsorption energies. The binding sites were located over the oxygen, doped nitrogen and five-fold coordinated titanium atoms of TiO2. The electronic properties including atomic Mulliken population, projected density of states and molecular orbitals were investigated in detail. The N-O bonds of the NO2 molecule were significantly increased after the adsorption process. The adsorption of NO2 molecule on the N-doped nanocomposite is more energetically favorable than the adsorption on the undoped one. The results suggest that NO2 chemisorbs on the considered nanocomposites. Mulliken population analysis reveals a noticeable charge transfer from the nanocomposite to the molecule, which indicate that NO2 acts as a charge acceptor. Molecular orbital calculations show that the highest occupied molecular orbitals (HOMOs) of the studied systems were mainly localized on the adsorbed NO2 molecule. The significant overlaps in the projected density of states (PDOS) spectra of the interacting atoms confirm the formation of chemical bonds between them. There is a direct relationship between the results of charge transfer and sensing responses. N-doped nanocomposites have better sensing response than the undoped ones. The results highlight the possibility to develop innovative highly efficient NO2 sensors based on novel TiO2/GO nanocomposites.
机译:金属氧化物基传感器的气体响应在其吸附性上强烈取决于其吸附性能。为了探讨原始和氮气改性TiO 2 /氧化烯氧化物(GO)异质结构的电位感测能力,使用密度函数理论(DFT)计算研究了NO2分子对N掺杂纳米复合材料的吸附。基于估计的吸附能量模拟六种可能的配置。结合位点位于氧气,掺杂的氮和五倍的TiO 2配位钛原子上。详细研究了包括原子Mulliken群体的电子性质和突出的状态和分子轨道。吸附过程后NO 2分子的N-O键显着增加。在N掺杂的NOPED纳米复合材料上的NO 2分子的吸附比未掺杂的纳米复合材料更具能力。结果表明NO2纳米复合材料上的NO2 Chemisorbs。 Mulliken人口分析显示从纳米复合材料到分子的显着电荷转移,表明NO2用作充电受体。分子轨道计算表明,研究的系统的最高占用的分子轨道(HOMOS)主要是局部化在吸附的NO2分子上。相互作用原子的突出状态(PDOS)光谱的突出密度的显着重叠证实了它们之间的化学键。电荷转移和传感响应的结果之间存在直接关系。 n掺杂的纳米复合材料比未掺杂的纳米复合材料更好。结果突出了基于新型TiO2 / Go纳米复合材料开发创新高效No2传感器的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号