...
首页> 外文期刊>Superconductor Science & Technology >Strong-pinning regimes by spherical inclusions in anisotropic type-II superconductors
【24h】

Strong-pinning regimes by spherical inclusions in anisotropic type-II superconductors

机译:各向异性II型超导体中的球形夹杂物的强固定制度

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The current-carrying capacity of type-II superconductors is decisively determined by how well material defect structures can immobilize vortex lines. In order to gain deeper insights into the fundamental pinning mechanisms, we have explored the case of vortex trapping by randomly distributed spherical inclusions using large-scale simulations of the time-dependent Ginzburg-Landau equations. We find that for a small density of particles having diameters of two coherence lengths, the vortex lattice preserves its structure and the critical current j(c) decays with the magnetic field following a power-law B-alpha with alpha approximate to 0.66, which is consistent with predictions of strong-pinning theory. For a higher density of particles and/or larger inclusions, the lattice becomes progressively more disordered and the exponent smoothly decreases down to alpha approximate to 0.3. At high magnetic fields, all inclusions capture a vortex and the critical current decays faster than B-1 as would be expected by theory. In the case of larger inclusions with a diameter of four coherence lengths, the magnetic-field dependence of the critical current is strongly affected by the ability of inclusions to capture multiple vortex lines. We found that at small densities, the fraction of inclusions trapping two vortex lines rapidly grows within narrow field range leading to a peak in j(c)(B)-dependence within this range. With increasing inclusion density, this peak transforms into a plateau, which then smooths out. Using the insights gained from simulations, we determine the limits of applicability of strong-pinning theory and provide different routes to describe vortex pinning beyond those bounds.
机译:II型超导体的承载能力果断地确定了材料缺陷结构如何固定涡旋线。为了获得深入的钉扎机制,我们已经探讨了使用时间依赖的Ginzburg-Landau方程的大规模模拟随机分布的球形夹杂物来探讨了涡旋俘获的情况。我们发现,对于具有两个相干长度的直径的小密度,涡流晶格在具有α接近0.66的动力法B-α之后,将其结构和临界电流J(c)衰减。与强循环理论的预测一致。对于较高的颗粒和/或更大的夹杂物,晶格变得逐渐变得更加无序,并且指数平滑地降低至α接近0.3。在高磁场,所有夹杂物捕获涡流,临界电流比B-1更快地衰减,因为它将通过理论预期。在具有四个相干长度的较大夹杂物的情况下,临界电流的磁场依赖性受到夹杂物捕获多个涡旋线的能力的强烈影响。我们发现,在小密度下,捕获两个涡旋线的夹杂物的分数在窄场范围内迅速增长,导致在该范围内的J(c)(b)(b)阶段中的峰值。随着夹杂物密度的增加,该峰值变成了一个平台,然后平滑。使用从模拟中获得的见解,我们确定强钉扎理论的适用性并提供不同的路线来描述超出这些界限的涡流固定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号