首页> 外文期刊>Structural and multidisciplinary optimization >Multidisciplinary design optimization for hybrid electric vehicles: component sizing and multi-fidelity frontal crashworthiness
【24h】

Multidisciplinary design optimization for hybrid electric vehicles: component sizing and multi-fidelity frontal crashworthiness

机译:混合动力车电动车的多学科设计优化:组件尺寸和多保真度正面持续性

获取原文
获取原文并翻译 | 示例
       

摘要

The electrification of road vehicle powertrains has recently gained growing interest worldwide as an effective solution to comply tightening regulations on CO2 emissions. In hybrid electric vehicles (HEVs), multiple power components, such as internal combustion engine, electric motor/generators, and battery system, are included in the powertrain to improve vehicle performances, thus involving an increase of the powertrain envelope and of the overall vehicle mass. Larger vehicle mass affects the design of the structural framework, which expands its envelope to meet safety requirements. The expansions of both powertrain systems and structural framework are indeed constrained by the limited vehicle widthtrack, which demands for tradeoff studies at early vehicle design phases to achieve a feasible solution while optimizing performances related to different design disciplines. These particularly include proper sizing of power components to achieve optimal fuel economy capabilities and accurate design of structural components to satisfy crashworthiness criteria while minimizing the associated structural mass. In this framework, the achievement of a globally optimal solution requires a cooperative development process that addresses the design problem accounting for all these disciplinary contributions in an integrated manner. This paper proposes a multidisciplinary design optimization (MDO) framework for the preliminary design of a power-split HEV powertrain accounting for crashworthiness requirements. A multidisciplinary feasible optimization architecture is particularly illustrated that includes a sequential scheme to evaluate the disciplines and a direct search method as the global system optimizer. Different sizes are swept for the internal combustion engine, the electric motors, and the planetary gear ratios. A multi-fidelity approach is considered for the crashworthiness analysis, to assess the feasibility of powertrain configurations. Results show that, including crashworthiness analysis in the MDO formulation of the design problem, the identified optimal design differs from the outcome of a powertrain-only based optimization process. Particularly, benefits in terms of global solution feasibility and associated computational cost are achieved. The presented methodology allows to efficiently integrate powertrain analyses and crashworthiness constraints and it is suited for the early design of HEVs.
机译:公路车动力传动系统的电气化最近在全球上获得了生长的利益,作为遵守CO2排放的紧缩规定的有效解决方案。在混合动力电动车辆(HEV)中,动力总成中包括多个功率部件,例如内燃机,电动机/发电机和电池系统,以改善车辆性能,从而涉及动力系包络和整个车辆的增加大量的。较大的车辆质量影响结构框架的设计,这扩大了其信封以满足安全要求。动力总成系统和结构框架的扩展确实受到限制的车辆WidtleTrack,这对早期车辆设计阶段的权衡研究要求实现可行的解决方案,同时优化与不同设计学科相关的性能。这些特别包括功率分量的适当尺寸,以实现最佳的燃油经济性和精确设计的结构部件,以满足崩溃性标准,同时最小化相关的结构质量。在这一框架中,实现全球最优解决方案需要一个合作开发过程,以综合方式解决所有这些纪律贡献的设计问题。本文提出了一种多学科设计优化(MDO)框架,用于电力分配HEV动力总成算用于崩溃要求的初步设计。特别说明的是多学科可行的优化架构,其包括顺序方案,以评估学科和直接搜索方法作为全局系统优化器。用于内燃机,电动机和行星齿轮比扫描不同尺寸。考虑了一种多保真方法,用于评估动力总成配置的可行性。结果表明,包括在设计问题的MDO配方中的耐火性分析,所识别的最佳设计与基于动力总成的优化过程的结果不同。特别是,实现了全球解决方案可行性和相关计算成本的益处。所提出的方法允许有效地整合动力总成分析和崩溃约束,并且适用于HEV的早期设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号