首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers, Part D. Journal of Automobile Engineering >Multidisciplinary design optimization of a zero-emission vehicle chassis considering crashworthiness and hydroformability
【24h】

Multidisciplinary design optimization of a zero-emission vehicle chassis considering crashworthiness and hydroformability

机译:零排放车辆底盘的多学科设计优化考虑了耐撞性和液压成形性

获取原文
获取原文并翻译 | 示例
           

摘要

This research used multidisciplinary design optimization to optimize the ladder frame chassis of a zero-emission vehicle by simultaneously considering three objective functions: (a) chassis mass, (b) deceleration during collision, and (c) manufacturability of a part in hydroforming. Additionally, design constraints were placed on torsional and bending stiffness, maximum von-Mises stress, and the natural frequency in torsion and bending. Optimization was completed in a three-phase approach: phase one used a simplified chassis model to conduct topology optimization with genetic algorithms; phase two was conducted to determine an optimum cross-sectional type and shape; and phase three incorporated results from phases one and two, into a high-fidelity, three-dimensional chassis model, for gradient-based optimization. Results from all phases of the design optimization indicated that improvements could be made over the baseline configuration. Through examination of Pareto frontiers in phase three, distinct trade-offs were identified between all objective functions: a 5 per cent reduction in chassis mass was required to maximize hydroformability; to minimize mass required a 90 per cent increase in deceleration; and minimization of deceleration required an 18 per cent decrease in hydroformability. Tri-objective optimization was used to generate a three-dimensional Pareto frontier 'surface' to show the impact of one objective function on all others simultaneously.
机译:这项研究使用多学科设计优化方法,通过同时考虑以下三个目标函数来优化零排放车辆的梯形框架底盘:(a)底盘质量,(b)碰撞时的减速度以及(c)液压成型零件的可制造性。此外,设计约束包括扭转和弯曲刚度,最大冯·米塞斯应力以及扭转和弯曲的固有频率。优化是通过三个阶段的方法完成的:第一阶段使用简化的底盘模型通过遗传算法进行拓扑优化;进行第二阶段以确定最佳的横截面类型和形状;第三阶段将第一阶段和第二阶段的结果合并到一个高保真三维底盘模型中,用于基于梯度的优化。设计优化所有阶段的结果表明,可以对基准配置进行改进。通过在第三阶段检查帕累托边界,可以在所有目标功能之间找到不同的取舍:要求将底盘质量减少5%,以最大程度地提高液压成形性;为了使质量最小化,要求减速增加90%;最小化减速要求将可成型性降低18%。三目标优化用于生成三维帕累托边界“表面”,以同时显示一个目标函数对所有其他函数的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号