首页> 外文期刊>Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion >Potential scalability of a cost-effective purification method for MgCl2-Containing salts for next-generation concentrating solar power technologies
【24h】

Potential scalability of a cost-effective purification method for MgCl2-Containing salts for next-generation concentrating solar power technologies

机译:用于下一代集中太阳能技术的MgCl2盐的成本效益纯化方法的潜在可扩展性

获取原文
获取原文并翻译 | 示例
           

摘要

Next-generation concentrating solar power (CSP) technology requires a high-temperature heat-transfer fluid and thermal energy storage media. Molten MgCl2 -KCl-NaCl is considered a potential candidate salt due to its thermophysical properties. However, MgCl2 presents various challenges because of its hygroscopic nature. To keep corrosion under control, this molten chloride needs to remain free of hydrates and other impurities. Here, we have developed an effective purification method for MgCl2-containing salts by 1) combining known laboratoryscale, batch-style thermal and chemical purification processes to enable scalable, continuous-style processes for commercial next-generation CSP operation; 2) improving overall efficiency and minimizing the major corrosive impurity MgOHCl by optimizing key engineering parameters such as heating temperature/time and amount of elemental Mg addition; and 3) investigating the addition of halite (NaCl) to carnallite (KMgCl3) to reduce the liquidus temperature. Laboratory-scale results suggest that 1) adding 6.5 wt% of halite and less than 0.1 wt% of elemental Mg to commercial carnallite and 2) following a heating schedule to at least 650 degrees C with similar to 3 h of holding time at that temperature can produce a ternary MgCl2 -KCl-NaCl salt composition with a low liquidus temperature of about 400 degrees C. It also reduces the presence of the corrosive impurity, MgOHCl, from similar to 1 to 2 wt.% to similar to 0.1 wt%. Findings of these key engineering parameters should provide a pathway toward a scalable, continuous-style salt-purification process at a scale of metric tons per hour that can produce a corrosioncontrolled chloride molten salt for CSP applications.
机译:下一代集中太阳能(CSP)技术需要高温传热流体和热能存储介质。由于其热物理性质,熔融MgCl 2 -KCl-NaCl被认为是潜在的候选盐。然而,MgCl2由于其吸湿性而呈现了各种挑战。为了保持对照的腐蚀,这种熔融的氯化物需要保持不含水合物和其他杂质。在这里,我们已经为含MgCl 2的盐的纯化方法进行了1),结合了已知的实验室施容,分批式热和化学净化方法,以实现可扩展的,连续式的商业下一代CSP操作的过程; 2)通过优化主要工程参数,提高整体效率,最小化主要腐蚀性杂质MgOHCL,例如加热温度/时间和元素Mg添加量; 3)研究将卤酸盐(NaCl)添加到碳酸盐(KMGCL3)中以降低液相高温。实验室标度结果表明,1)将6.5wt%的宿骨和小于0.1wt%的元素Mg,以商业碳粉腈,2)在加热时间表中以至少650℃,在该温度下保持时间3小时可以生产液体温度为约400℃的液体温度的三元MgCl2 -kCl-NaCl组合物。它还减少了腐蚀性杂质MgOHCl的存在,从类似于1至2重量%。%〜0.1wt%。这些关键工程参数的结果应以每小时的公制吨的规模提供朝向可扩展的连续式盐净化过程,可以生产用于CSP应用的腐蚀性氯化盐。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号