首页> 外文期刊>Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion >Mitigating scalability issues of perovskite photovoltaic technology through a p-i-n meso-superstructured solar cell architecture
【24h】

Mitigating scalability issues of perovskite photovoltaic technology through a p-i-n meso-superstructured solar cell architecture

机译:通过P-I-N中型太阳能电池架构缓解PEROVSKITE光伏技术的可扩展性问题

获取原文
获取原文并翻译 | 示例
           

摘要

The relevance of perovskite photovoltaics is fully supported by its impressive development in recent years. Besides high efficiency, adoption of this technology requires obtaining long operational stability and cost-effective fabrication methods of large area devices. With the current perovskite solar cell (PSC) configurations (planar or meso n-i-p), it is difficult to deposit uniform pin-hole free films over large area at low temperature ( < 100 degrees C). In order to solve the above issues, we adopt a fabrication strategy for the scaling up of perovskite solar cells. Particularly, we study and fabricate a meso-superstructured p-type/intrinsic/n-type (p-i-n) cell (p-i-n-meso) configuration in which the insulating mesoporous layer of Al2O3 plays a key role in the fabrication of perovskite solar modules and therefore we also draw attention to this structure that has been out of the map for the fabrication of large area perovskite devices. The potential of this architecture is demonstrated through fabrication of devices ranging from small area (9 mm(2)) up to eight-cell CH3NH3PbI3 perovskite modules over substrates as large as 100 cm(2). A record photovoltaic conversion efficiency (PCE) of 9.3% and geometrical fill factor (GFF) of 84% was reached for a module with 17 cm(2)of active area. Additionally, we carried out an in-situ monitoring of the photovoltaic parameters of one perovskite module for 2000 h under outdoor conditions, giving evidence of the high performance and stability of encapsulated perovskite photovoltaic technology in a real operational environment. This study paves the way to the upscaling of stable, efficient and full-solution-processed PSCs.
机译:近年来,其令人印象深刻的发展得到了佩罗夫斯基特光伏的相关性。除了高效率之外,采用该技术需要获得大面积设备的长期操作稳定性和经济高效的制造方法。利用当前的钙钛矿太阳能电池(PSC)配置(平面或MESO N-I-P),难以在低温(<100℃)的大面积上沉积均匀的销孔免薄膜。为了解决上述问题,我们采用了一种制造策略来扩大Perovskite太阳能电池。特别地,我们研究和制造了一种中皮的p型/内在/ n型(引脚)电池(销Meso)构型,其中Al2O3的绝缘介孔层在佩罗夫斯基特太阳能模块的制造中起关键作用,因此我们还引起了对该结构的注意力,该结构已经出于制造大面积佩洛夫斯库特设备。通过在大约100cm(2)的基板上,通过制造从小面积(9mm(2))的装置,通过从小面积(9mm(2))的装置制造施加该架构的潜力。对于有效区域17厘米(2)(2)的模块,达到了9.3%和几何填充因子(GFF)的记录光伏转换效率(PCE)为84%的有源区。此外,我们在室外条件下对2000小时进行了2000小时的一个钙钛矿模块的光伏参数的原位监测,赋予封装的Perovskite光伏技术在真正的操作环境中的高性能和稳定性。本研究铺平了稳定,高效和全面解决的PSC的升级方式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号