首页> 外文期刊>Shock Waves >Exact solution of shock wave structure in a non-ideal gas under constant and variable coefficient of viscosity and heat conductivity
【24h】

Exact solution of shock wave structure in a non-ideal gas under constant and variable coefficient of viscosity and heat conductivity

机译:在恒定和可变粘度系数下的非理想气体中的冲击波结构的精确解和导热系数

获取原文
获取原文并翻译 | 示例
           

摘要

This paper investigates the structure of a normal shock wave using the continuum model for steady one-dimensional flow of a viscous non-ideal gas under heat conduction. The coefficients of viscosity and heat conductivity are assumed to be directly proportional to a power of the temperature. The simplified van der Waals equation of state for the non-ideal gas has been assumed in this work. The smooth and rough sphere models of the gas molecules in the kinetic theory of gases are used for the viscosity of a non-ideal gas. Assuming the Prandtl number to be 3/4, the complete integral of the energy equation, exact velocity, density, pressure, Mach number, change in entropy, viscous stress, and heat flux across the shock transition zone have been obtained in a perfect and a non-ideal gas under both constant and variable properties of the medium. The validity of the continuum hypothesis with respect to Mach number is examined for the study of shock wave structure in both the smooth and rough sphere models of ideal and non-ideal gas molecules. It has been shown that the continuum theory gives reasonably valid results for flows with higher Mach numbers in the case of a non-ideal gas in comparison with an ideal gas. The inverse thickness of the shock wave is calculated and compared for constant and variable properties of the gases. The shock wave thickness is also discussed as a function of mean free path of the gas molecules computed at different points between the boundary states. It is found that the inverse shock thickness decreases with the increase in non-idealness of the gas. In the rough sphere model of gas molecules, the increase in the non-idealness of the gas and the temperature exponent in the coefficients of viscosity and heat conductivity significantly increases the validity limit of the continuum model.
机译:本文研究了使用连续体模型的正常冲击波的结构,用于在热传导下粘性非理想气体的稳定一维流动。假设粘度和导热率的系数与温度的功率成正比。在这项工作中假设了用于非理想气体的简化范德瓦尔斯方程。气体中气体分子的平滑和粗糙球模型用于非理想气体的粘度。假设Prandtl号码为3/4,在完美的和完美的情况下,获得了能量方程,精确速度,密度,压力,马赫数,熵,粘性应力和热通量的完全整体,已经获得了震荡过渡区的熵,粘性应力和热量通量在介质的恒定和可变性质下的非理想气体。研究了关于Mach数量的连续假设的有效性,用于在理想和非理想气体分子的光滑和粗糙球模型中研究冲击波结构。已经表明,连续性理论为具有理想气体的非理想气体的情况提供了具有较高马赫数的合理有效的结果。计算冲击波的逆厚度,并比较气体的恒定性质和可变性质。还讨论了冲击波厚度作为在边界状态之间计算的气体分子的平均自由路径的函数。结果发现,随着气体的非理想性的增加,逆冲击厚度降低。在气体分子的粗糙球模型中,气体的非理想性和粘度系数中的温度指数的增加显着提高了连续模型的有效性极限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号