首页> 外文期刊>Soil Biology & Biochemistry >Regulation of soil organic matter decomposition in permafrost-affected Siberian tundra soils - Impact of oxygen availability, freezing and thawing, temperature, and labile organic matter
【24h】

Regulation of soil organic matter decomposition in permafrost-affected Siberian tundra soils - Impact of oxygen availability, freezing and thawing, temperature, and labile organic matter

机译:Moverafrost受影响的西伯利亚苔原土壤土壤有机质分解的调节 - 氧气可用性,冷冻和解冻,温度和不稳定的影响

获取原文
获取原文并翻译 | 示例
       

摘要

The large amounts of soil organic matter (SOM) in permafrost-affected soils are prone to increased microbial decomposition in a warming climate. The environmental parameters regulating the production of carbon dioxide (CO2) and methane (CH4), however, are insufficiently understood to confidently predict the feedback of thawing permafrost to global warming. Therefore, the effects of oxygen availability, freezing and thawing, temperature, and labile organic matter (OM) additions on greenhouse gas production were studied in northeast Siberian polygonal tundra soils, including the seasonally thawed active layer and upper perennially frozen permafrost. Soils were incubated at constant temperatures of 1 degrees C, 4 degrees C, or 8 degrees C for up to 150 days. CO2 production in surface layers was three times higher than in the deeper soil. Under anaerobic conditions, SOM decomposition was 2-6 times lower than under aerobic conditions and more CO2 than CH4 was produced. CH4 contributed less than 2% to anaerobic decomposition in thawed permafrost but more than 20% in the active layer. A freeze-thaw cycle caused a short-lived pulse of CO2 production directly after re-thawing. Q(10), values, calculated via the equal-carbon method, increased with soil depth from 3.4 +/- 1.6 in surface layers to 6.1 +/- 2.8 in the permafrost. The addition of plant-derived labile OM (C-13-labelled Carex aquatilis leaves) resulted in an increase in SOM decomposition only in permafrost (positive priming). The current results indicate that the decomposition of permafrost SOM will be more strongly influenced by rising temperatures and the availability of labile OM than active layer material. The obtained data can be used to inform process-based models to improve simulations of greenhouse gas production potentials from thawing permafrost landscapes. (C) 2017 The Authors. Published by Elsevier Ltd.
机译:在温热的土壤中大量的土壤有机物(Som)易于在温暖的气候中增加微生物分解。然而,调节二氧化碳(CO 2)和甲烷(CH 4)的产生的环境参数不充分地理解为自信地预测解冻永久冻土的反馈。因此,在东北西伯利亚多边形苔原土壤中研究了氧可用性,冷冻和解冻,温度和不稳定的有机物质(OM)添加的影响,包括季节性化的活性层和上常常冷冻永久冻土。在恒定温度为1℃,4℃,或8℃的恒定温度下孵育,最多150天。表面层的二氧化碳生产比深层土壤高三倍。在厌氧条件下,SOM分解比在有氧条件下低2-6倍,产生比CH4更多的二氧化碳。 CH4在厌氧分解中占厌氧分解的少于2%,但在活性层中超过20%。冻融循环在再解冻后直接导致CO2生产的短寿命脉冲。 Q(10),通过等碳方法计算的值随着3.4 +/- 1.6的土壤深度增加到Permafrost的6.1 +/- 2.8。添加植物衍生的不稳定OM(C-13标记的Carex Aquatilis叶子)导致仅在多毛霜(正引发)中的SOM分解增加。目前的结果表明,通过上升温度和不稳定的优于活性层材料的不稳定性,将更强烈地影响多年冻土SOM的分解。所获得的数据可用于通知基于过程的模型,以改善解冻永久冻土景观的温室气体生产潜力的模拟。 (c)2017作者。 elsevier有限公司出版

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号