首页> 外文期刊>Soil Biology & Biochemistry >Microbial mechanisms of the contrast residue decomposition and priming effect in soils with different organic and chemical fertilization histories
【24h】

Microbial mechanisms of the contrast residue decomposition and priming effect in soils with different organic and chemical fertilization histories

机译:不同有机与化学施肥史的土壤对比残余物分解和灌注效应的微生物机制

获取原文
获取原文并翻译 | 示例
           

摘要

We integrated chemical, enzymatic, isotopic and molecular approaches to investigate both straw decomposition and its priming effect (PE) on native soil organic carbon (SOC) decomposition in soils with 23 years of application of chemical fertilizer (NPK) and partial substitution of chemical fertilizer by organic manure (NPKM). We found that NPK and NPKM past application significantly increased decomposition of straw. The increases in straw decomposition were not correlated with the abundances of microbiome assimilating straw carbon, but were significantly correlated with abundances of total bacteria, fungi and activities of cellulose-degrading enzymes. In addition, application of NPK did not change straw-induced PE while application of NPKM markedly reduced PE. The variation of PE with different past fertilization was correlated with the abundance of residue stimulated fungi. The unchanged PE with NPK application in the presence of enriched nutrients and reduced pH was probably due to residue-promoted growth of acid-tolerant SOC-decomposing taxa (unclassified bacteria families belong to Acidobacteria GP3, Gamaproteobacteria and WPS-2 and unclassified fungal families belong to Chaetothyriales and Agaricomycetes). Our research sheds light on the complex processes of carbon transformation in the soils undergoing different long-term nutrient management
机译:我们综合化学,酶,同位素和分子方法,以研究秸秆分解及其对土着土壤有机碳(SOC)分解的秸秆分解及其灌注效应(PE),在23年的化学肥料(NPK)和偏取代的化学肥料中通过有机粪便(NPKM)。我们发现NPK和NPKM过去的应用程序显着增加了吸管的分解。秸秆分解的增加与微生物组吸收秸秆碳的丰度不相关,但与纤维素降解酶的总细菌,真菌和活性的丰富显着相关。此外,在使用NPKM显着降低PE的同时,NPK的应用没有改变秸秆诱导的PE。具有不同过去施肥的PE的变异与刺激真菌的丰度相关。在富含富含营养物质和降低的pH下存在的NPK应用的不变的PE可能是由于残留的耐酸性SoC分解出生物的生长(未分类的细菌家族属于acidobacteria GP3,GamprooteCacteria和WPS-2和未分类的真菌家庭属于到Chaetothyriales和姬毛茸)。我们的研究揭示了经受长期营养管理的土壤中碳转化的复杂过程

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号