...
首页> 外文期刊>Biology and fertility of soils: Cooperating Journal of the International Society of Soil Science >Residue decomposition and soil carbon priming in three contrasting soils previously exposed to elevated CO2
【24h】

Residue decomposition and soil carbon priming in three contrasting soils previously exposed to elevated CO2

机译:三种对比土壤暴露于升高的土壤中残留物分解和土壤碳灌注

获取原文
获取原文并翻译 | 示例
           

摘要

The effects of elevated atmospheric carbon dioxide (eCO(2)) on belowground processes are known to occur directly and indirectly via plants. However, the long-term impact of eCO(2) on biochemical properties and processes of agricultural soils in the absence of plants is unclear. The current study investigated whether residue decomposition and the subsequent priming effect' on soil organic C (SOC) mineralisation were altered in three contrasting soils previously exposed to either ambient CO2 (aCO(2); 390ppm) or eCO(2) (550ppm) using free-air CO2 enrichment (FACE) for 4years. Surface soils (0-2cm) of calcisol, luvisol and vertisol were amended (0.5% w w(-1)) with C-13-labelled field pea (Pisum sativum L. cv. PBA; C:N 20) or wheat (Triticum aestivum cv. Yitpi; C:N 60) residues, and CO2 derived from soil (CO2 soil) and residue (CO2 residue) were quantified over the 96-day incubation study. Field pea decomposition was not affected by soil type or CO2 history, and the decomposition of wheat was similar in all soils previously exposed to aCO(2). However, wheat decomposition was increased in luvisol (14.4%), decreased in vertisol (26.7%) or not affected by eCO(2) in the calcisol. The relative differences between soils were largely driven by labile N content and the potential to replenish inorganic N via mineralisation. Notably, priming was not influenced by residue type, despite their contrasting N content. In the calcisol, lower basal C mineralisation and C priming under eCO(2) were not explained by lower N concentrations. A greater priming effect in field pea-amended vertisol previously exposed to eCO(2) than aCO(2) was likely due to overcoming the N limitation on microbial C mineralisation in this soil. Overall, the study highlighted that C mineralisation was mainly determined by soil N status, less by CO2 history and least by residue quality (C:N ratio).
机译:已知升高的大气二氧化碳(Eco(2))对地下过程的影响是通过植物直接和间接发生的。然而,ECO(2)对植物没有植物的生物化学性质和农业土壤过程的长期影响尚不清楚。目前的研究研究了在先前暴露于环境二氧化碳(ACO(2); 390ppm)或Eco(2)(550ppm)的三个对比土壤中的残留物分解和随后的灌注效应'是否改变了土壤有机C(SoC)矿化的含量。使用4年的自由空中二氧化碳浓缩(面部)。将表面土壤(0-2厘米)进行钙,Luvisol和Vertisol(0.5%ww(-1)),C-13标记的豌豆(Pisum sativum l. cv.pba; c:n 20)或小麦(小麦Aestivum Cv。yitpi; c:n 60)残留物和衍生自土壤(二氧化碳土壤)和残留物(二氧化碳残留物)的残基和二氧化碳(CO 2残留物)在96天孵育研究中定量。野生豌豆分解不受土壤类型或二氧化碳历史的影响,并且小麦的分解在先前暴露于ACO(2)的所有土壤中相似。然而,小麦分解在洛维索尔(14.4%)中增加,在转溶胶(26.7%)中减少,或者在石油中的Eco(2)的影响下降。土壤之间的相对差异在很大程度上受到不稳定的含量和通过矿化补充无机N的潜力。值得注意的是,尽管氮气含量对比,但初步的影响不受残留物的影响。在钙亮中,低N浓度未解释Eco(2)下的较低基础C矿化和C灌注。在前面暴露于Eco(2)的豌豆修正的vertisol中的初步效果比ACO(2)克服了该土壤中微生物C矿化的N局限性。总体而言,该研究突出显示C矿化主要由土壤n状态决定,减少二氧化碳历史,至少通过残留物质(C:N比)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号