...
首页> 外文期刊>Small >Biological Spiking Synapse Constructed from Solution Processed Bimetal Core-Shell Nanoparticle Based Composites
【24h】

Biological Spiking Synapse Constructed from Solution Processed Bimetal Core-Shell Nanoparticle Based Composites

机译:从溶液加工双金属核 - 壳纳米粒子基复合材料构建的生物尖峰突触

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Inspired by the highly parallel processing power and low energy consumption of the biological nervous system, the development of a neuromorphic computing paradigm to mimic brain-like behaviors with electronic components based artificial synapses may play key roles to eliminate the von Neumann bottleneck. Random resistive access memory (RRAM) is suitable for artificial synapse due to its tunable bidirectional switching behavior. In this work, a biological spiking synapse is developed with solution processed Au@Ag core-shell nanoparticle (NP)-based RRAM. The device shows highly controllable bistable resistive switching behavior due to the favorable Ag ions migration and filament formation in the composite film, and the good charge trapping and transport property of Au@Ag NPs. Moreover, comprehensive synaptic functions of biosynapse including paired-pulse depression, pairedpulse facilitation, post-tetanic potentiation, spike-time-dependent plasticity, and the transformation from short-term plasticity to long-term plasticity are emulated. This work demonstrates that the solution processed bimetal core- shell nanoparticle-based biological spiking synapse provides great potential for the further creation of a neuromorphic computing system.
机译:灵感灵感来自生物神经系统的高度平行处理能力和低能量消耗,在基于电子元器件的人工突触的脑状脑的行为的发展范式的发展可能会发挥关键作用以消除von neumann瓶颈。随机电阻存取存储器(RRAM)适用于其可调谐双向切换行为导致的人工突触。在这项工作中,通过溶液加工Au @ Ag核 - 壳纳米粒子(NP)开发了一种生物尖峰突触。基于RRAM。该器件由于复合膜中有利的Ag离子迁移和长丝形成,以及Au @ Ag nps的良好电荷捕获和运输性能,该装置表示具有高度可控的双稳态电阻切换行为。此外,Biosynapse的综合突触功能包括配对脉冲凹陷,对促进的促进,后滴动级级,峰值时间依赖性塑性,以及从短期可塑性到长期可塑性的转化。这项工作表明,该溶液加工双金属核 - 壳纳米粒子的生物尖峰突触为进一步创造了神经形态计算系统提供了巨大的潜力。

著录项

  • 来源
    《Small》 |2018年第28期|共10页
  • 作者单位

    College of Electronic Science &

    Technology Shenzhen University Shenzhen 518060 China;

    Institute for Advanced Study Shenzhen University Shenzhen 518060 China;

    Institute for Advanced Study Shenzhen University Shenzhen 518060 China;

    College of Electronic Science &

    Technology Shenzhen University Shenzhen 518060 China;

    Institute for Advanced Study Shenzhen University Shenzhen 518060 China;

    Institute for Advanced Study Shenzhen University Shenzhen 518060 China;

    Shenzhen Key Laboratory of Laser Engineering College of Optoelectronic Engineering Shenzhen University Shenzhen 518060 China;

    Shenzhen Key Laboratory of Laser Engineering College of Optoelectronic Engineering Shenzhen University Shenzhen 518060 China;

    Department of Chemistry South University of Science and Technology of China Shenzhen 518055 China;

    Department of Chemistry South University of Science and Technology of China Shenzhen 518055 China;

    Institute for Advanced Study Shenzhen University Shenzhen 518060 China;

    College of Electronic Science &

    Technology Shenzhen University Shenzhen 518060 China;

    College of Electronic Science &

    Technology Shenzhen University Shenzhen 518060 China;

    College of Electronic Science &

    Technology Shenzhen University Shenzhen 518060 China;

    College of Electronic Science &

    Technology Shenzhen University Shenzhen 518060 China;

    Department of Materials Science and Engineering City University of Hong Kong Hong Kong 999077 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 特种结构材料;
  • 关键词

    artificial synapses; bimetal core-shell nanoparticles; neuromorphic computing; resistive switching; solution process;

    机译:人工突触;双金属核 - 壳纳米粒子;神经形态计算;电阻切换;解决方案过程;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号