...
首页> 外文期刊>Small >Inertial Microfluidic Cell Stretcher (iMCS): Fully Automated, High-Throughput, and Near Real-Time Cell Mechanotyping
【24h】

Inertial Microfluidic Cell Stretcher (iMCS): Fully Automated, High-Throughput, and Near Real-Time Cell Mechanotyping

机译:惯性微流体细胞担架(IMC):全自动,高吞吐量,以及近实时细胞机械型

获取原文
获取原文并翻译 | 示例

摘要

Mechanical biomarkers associated with cytoskeletal structures have been reported as powerful label-free cell state identifiers. In order to measure cell mechanical properties, traditional biophysical (e.g., atomic force microscopy, micropipette aspiration, optical stretchers) and microfluidic approaches were mainly employed; however, they critically suffer from low-throughput, low-sensitivity, and/or time-consuming and labor-intensive processes, not allowing techniques to be practically used for cell biology research applications. Here, a novel inertial microfluidic cell stretcher (iMCS) capable of characterizing large populations of single-cell deformability near real-time is presented. The platform inertially controls cell positions in microchannels and deforms cells upon collision at a T-junction with large strain. The cell elongation motions are recorded, and thousands of cell deformability information is visualized near real-time similar to traditional flow cytometry. With a full automation, the entire cell mechanotyping process runs without any human intervention, realizing a user friendly and robust operation. Through iMCS, distinct cell stiffness changes in breast cancer progression and epithelial mesenchymal transition are reported, and the use of the platform for rapid cancer drug discovery is shown as well. The platform returns large populations of single-cell quantitative mechanical properties (e.g., shear modulus) on-the-fly with high statistical significances, enabling actual usages in clinical and biophysical studies.
机译:据报道,与细胞骨骼结构相关的机械生物标志物作为无标记的无标记细胞状态标识符。为了测量细胞机械性能,主要采用传统的生物物理(例如原子力显微镜,微流体方法和微流体方法;然而,它们严重患有低通量,低灵敏度和/或耗时的耗时和劳动密集型过程,而不是允许实际用于细胞生物学研究应用的技术。这里,呈现了一种新的惯性微流体细胞担架(IMC),其能够在实时地进行大量的单细胞变形性的大群体。平台在具有大应变的T型连接处碰撞时,界高控制微通道中的细胞位置并使电池变形。记录细胞伸长动作,并且在与传统流式细胞仪类似的情况下,近千个细胞可变形信息可视化。通过完整的自动化,整个单元机机理学工艺在没有任何人为干预的情况下运行,实现用户友好和稳健的操作。通过IMCS,报道了乳腺癌进展和上皮间充质转换的不同细胞僵硬变化,并且也显示了快速癌症药物发现的平台。该平台以高统计学意义,在飞行中返回大型单细胞定量机械性能(例如,剪切模量)的大量群体,从而实现了临床和生物物理学研究的实际用法。

著录项

  • 来源
    《Small 》 |2017年第28期| 共11页
  • 作者单位

    Rensselaer Polytech Inst Dept Mech Aerosp &

    Nucl Engn 110 8th St Troy NY 12180 USA;

    SUNY Albany Dept Biomed Sci Canc Res Ctr Rensselaer NY 12144 USA;

    Rensselaer Polytech Inst Dept Mech Aerosp &

    Nucl Engn 110 8th St Troy NY 12180 USA;

    Rensselaer Polytech Inst Dept Mech Aerosp &

    Nucl Engn 110 8th St Troy NY 12180 USA;

    SUNY Albany Dept Biomed Sci Canc Res Ctr Rensselaer NY 12144 USA;

    SUNY Albany Dept Biomed Sci Canc Res Ctr Rensselaer NY 12144 USA;

    SUNY Albany Dept Biomed Sci Canc Res Ctr Rensselaer NY 12144 USA;

    SUNY Albany Dept Biomed Sci Canc Res Ctr Rensselaer NY 12144 USA;

    Rensselaer Polytech Inst Dept Mech Aerosp &

    Nucl Engn 110 8th St Troy NY 12180 USA;

    SUNY Albany Dept Biomed Sci Canc Res Ctr Rensselaer NY 12144 USA;

    Rensselaer Polytech Inst Dept Mech Aerosp &

    Nucl Engn 110 8th St Troy NY 12180 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 特种结构材料 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号