首页> 美国卫生研究院文献>other >Inertial Microfluidic Cell Stretcher (iMCS): Fully Automated High-throughput and Near Real-time Cell Mechanotyping
【2h】

Inertial Microfluidic Cell Stretcher (iMCS): Fully Automated High-throughput and Near Real-time Cell Mechanotyping

机译:惯性微流控细胞担架(iMCS):全自动高通量和近实时的细胞机械分型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mechanical biomarkers associated with cytoskeletal structures have been reported as powerful label-free cell state identifiers. In order to measure cell mechanical properties, traditional biophysical (e.g., atomic force microscopy, micropipette aspiration, optical stretchers) and microfluidic approaches were mainly employed; however, they critically suffer from low-throughput, low-sensitivity, and/or time-consuming and labor-intensive processes, not allowing techniques to be practically used for cell biology research applications. Here, a novel inertial microfluidic cell stretcher (iMCS) capable of characterizing large populations of single-cell deformability near real-time is presented. The platform inertially controls cell positions in microchannels and deforms cells upon collision at a T-junction with large strain. The cell elongation motions are recorded, and thousands of cell deformability information is visualized near real-time similar to traditional flow cytometry. With a full automation, the entire cell mechanotyping process runs without any human intervention, realizing a user friendly and robust operation. Through iMCS, distinct cell stiffness changes in breast cancer progression and epithelial mesenchymal transition are reported, and the use of the platform for rapid cancer drug discovery is shown as well. The platform returns large populations of single-cell quantitative mechanical properties (e.g., shear modulus) on-the-fly with high statistical significances, enabling actual usages in clinical and biophysical studies.
机译:与细胞骨架结构相关的机械生物标记物已被报道为功能强大的无标记细胞状态标识符。为了测量细胞的机械性能,主要采用传统的生物物理方法(例如,原子力显微镜,微量移液器抽吸,光学担架)和微流体方法。然而,它们严重地受到低通量,低灵敏度和/或费时且费力的过程的困扰,从而不允许将技术实际用于细胞生物学研究应用。在这里,提出了一种新型的惯性微流控细胞担架(iMCS),该担架能够表征接近实时的大量单细胞可变形性。平台惯性地控制微通道中的细胞位置,并在大应变的T形接头发生碰撞时使细胞变形。记录细胞伸长运动,类似于传统的流式细胞仪,几乎实时显示成千上万的细胞变形信息。通过完全自动化,整个细胞机械分型过程无需任何人工干预即可运行,从而实现了用户友好且稳定的操作。通过iMCS,报告了乳腺癌进展和上皮间质转化中明显的细胞僵硬变化,并且还显示了该平台用于快速发现癌症药物的用途。该平台可即时返回具有大量统计意义的大量单细胞定量机械性能(例如剪切模量),从而可以在临床和生物物理研究中进行实际使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号