首页> 外文期刊>Small >Extending the Colloidal Transition Metal Dichalcogenide Library to ReS_2 Nanosheets for Application in Gas Sensing and Electrocatalysis
【24h】

Extending the Colloidal Transition Metal Dichalcogenide Library to ReS_2 Nanosheets for Application in Gas Sensing and Electrocatalysis

机译:将胶体过渡金属二甲基化物文库延伸至res_2纳米蛋白酶,用于在气体传感和电殖分析中应用

获取原文
获取原文并翻译 | 示例
           

摘要

Among the large family of transition metal dichalcogenides, recently ReS_2 has stood out due to its nearly layer-independent optoelectronic and physicochemical properties related to its 1T distorted octahedral structure. This structure leads to strong in-plane anisotropy, and the presence of active sites at its surface makes ReS_2 interesting for gas sensing and catalysts applications. However, current fabrication methods use chemical or physical vapor deposition (CVD or PVD) processes that are costly, time-consuming and complex, therefore limiting its large-scale production and exploitation. To address this issue, a colloidal synthesis approach is developed, which allows the production of ReS_2 at temperatures below 360 °C and with reaction times shorter than 2h. By combining the solution-based synthesis with surface functionalization strategies, the feasibility of colloidal ReS_2 nanosheet films for sensing different gases is demonstrated with highly competitive performance in comparison with devices built with CVD-grown ReS_2 and MoS_2. In addition, the integration of the ReS_2 nanosheet films in assemblies together with carbon nanotubes allows to fabricate electrodes for electrocatalysis for H_2 production in both acid and alkaline conditions. Results from proof-of-principle devices show an electrocatalytic overpotential competitive with devices based on ReS_2 produced by CVD, and even with MoS_2, WS_2, and MoSe_2 electrocatalysts.
机译:在大族过渡金属二甲基甲基甲基甲基化物中,最近RES_2由于其与其1T扭曲的八面体结构相关的几乎是独立于无关的光电和物理化学性质而突出。该结构导致强面内各向异性,并且其表面的活性位点的存在使得RES_2对气体传感和催化剂应用具有敏捷。然而,目前的制造方法使用昂贵,耗时和复杂的化学或物理气相沉积(CVD或PVD)过程,因此限制了其大规模的生产和剥削。为了解决这个问题,开发了一种胶体合成方法,其允许在低于360°C的温度下产生RES_2并在短于2H的反应时间。通过将基于溶液的合成与表面官能化策略组合,胶体RES_2纳米片薄膜用于感测不同气体的可行性,并具有高竞争性的性能,与CVD-生长的RES_2和MOS_2构成的器件相比。此外,将Res_2纳芯膜在组件中与碳纳米管的整合允许制造用于H_2在酸和碱性条件下的H_2产生的电极。原则上的结果表明,基于CVD产生的RES_2的器件,甚至使用MOS_2,WS_2和MOSE_2电催化剂,有电催化过电位竞争。

著录项

  • 来源
    《Small》 |2019年第52期|共16页
  • 作者单位

    Graphene Labs Istituto Italiano di Tecnologia via Morego 30 16163 Genova Italy;

    Optoelectronics Group Istituto Italiano di Tecnologia via Morego 30 16163 Genova Italy;

    Graphene Labs Istituto Italiano di Tecnologia via Morego 30 16163 Genova Italy;

    Materials Characterization Facility Istituto Italiano di Tecnologia via Morego 30 16163 Genova Italy;

    Graphene Labs Istituto Italiano di Tecnologia via Morego 30 16163 Genova Italy;

    Nanochemistry Department Istituto Italiano di Tecnologia via Morego 30 16163 Genova Italy;

    Electron Microscopy Facility Istituto Italiano di Tecnologia via Morego 30 16163 Genova Italy;

    BeDimensional Spa. Via Albisola 121 16163 Genova Italy;

    Graphene Labs Istituto Italiano di Tecnologia via Morego 30 16163 Genova Italy;

    Graphene Labs Istituto Italiano di Tecnologia via Morego 30 16163 Genova Italy;

    Dipartimento di Scienze Matematiche ed Informatiche Scienze Fisiche e Scienze della Terra Università di Messina Viale F. Stagno d'Alcontres 31 S. Agata 98166 Messina Italy;

    Graphene Labs Istituto Italiano di Tecnologia via Morego 30 16163 Genova Italy;

    Optoelectronics Group Istituto Italiano di Tecnologia via Morego 30 16163 Genova Italy;

    Nanochemistry Department Istituto Italiano di Tecnologia via Morego 30 16163 Genova Italy;

    Graphene Labs Istituto Italiano di Tecnologia via Morego 30 16163 Genova Italy;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 特种结构材料;
  • 关键词

    colloidal synthesis; electrocatalysts; gas sensors; hydrogen evolution reaction; transition metal dichalcogenides;

    机译:胶体合成;电催化剂;气体传感器;氢气进化反应;过渡金属二硫代甲胺;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号