首页> 外文期刊>Silicon >Silicon Nanoparticles Preparation by Induction Plasma Technology for Li-ion Batteries Anode Material
【24h】

Silicon Nanoparticles Preparation by Induction Plasma Technology for Li-ion Batteries Anode Material

机译:硅纳米粒子通过对锂离子电池阳极材料进行诱导等离子体技术制备

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The monocrystalline silicon nanoparticles were prepared by induction plasma technology with micron silicon powder as raw material. The mean particle size is 70 and 15 nm silicon nanoparticles prepared with the quenching gas flow rate at 50 and 100 L min(-1), respectively. The particle size, crystallinity and morphology are mainly influenced by the quenching gas flow rate. The fine grit silicon nanoparticles can be formed under the condition of high quenching gas flow rate due to the inhibition of nucleation and growth. The silicon nanoparticles were used to synthesis Si@Graphite composites, the initial discharge capacity and coulombic efficiency of 70 nm Si@Graphite composites are 531.9 mAh g(-1) and 83.4%, while 15 nm Si@Graphite composites are 510.6 mAh g(-1) and 81.73%, respectively. The capacity retention of 70 nm Si@Graphite composites after 500 cycles is only 52.9%, while 15 nm Si@Graphite composites is 88%. It has been found the fracture of silicon nanoparticles and graphite along with the destruction of electrode structure lead to the capacity loss in the 70 nm Si@Graphite composites electrode. Because the forming of larger solid electrolyte interphase (SEI) film in 15 nm Si@Graphite composites electrode, the charge transfer on the electrode surface is hindered. However, the lithium-ion diffusion ability of 15 nm Si@Graphite composites is little higher than 70 nm Si@Graphite composites.
机译:通过用微米硅粉作为原料,通过诱导等离子体技术制备单晶硅纳米颗粒。平均粒度为70且15nm硅纳米颗粒,其在50和100μlmin(-1)分别在50和100μm(-1)处制备。粒度,结晶度和形态主要受淬火气体流速的影响。由于抑制成核和生长,可以在高淬火气体流速的条件下形成细粒硅纳米颗粒。硅纳米颗粒用于合成Si @石墨复合材料,初始放电容量和70nm Si @石墨复合材料的库仑效率为531.9mAhg(-1)和83.4%,而15nm Si @石墨复合材料是510.6mAhg( -1)分别和81.73%。 500次循环后70nm Si @石墨复合材料的容量保持仅为52.9%,而15nm Si @石墨复合材料为88%。已经发现硅纳米颗粒和石墨的骨折随着电极结构的破坏导致70nm Si @石墨复合电极中的容量损失。因为在15nm Si @石墨复合材料中形成较大的固体电解质间(SEI)膜,所以阻碍了电极表面上的电荷转移。然而,15nm Si @石墨复合材料的锂离子扩散能力小于70nm Si @石墨复合材料。

著录项

  • 来源
    《Silicon》 |2020年第9期|共11页
  • 作者单位

    Guilin Univ Elect Technol Guangxi Key Lab Informat Mat Sch Mech &

    Elect Engn Guilin 541004 Peoples R China;

    Guilin Univ Elect Technol Guangxi Key Lab Informat Mat Sch Mech &

    Elect Engn Guilin 541004 Peoples R China;

    China Monferrous Met Guilin Geol &

    Min Co Ltd Guilin Key Lab Microelect Elect Mat &

    Biol Nanoma Guilin 541004 Peoples R China;

    Guilin Univ Technol Coll Mat Sci &

    Engn Guilin 541004 Peoples R China;

    Guilin Univ Elect Technol Guangxi Key Lab Informat Mat Sch Mech &

    Elect Engn Guilin 541004 Peoples R China;

    China Monferrous Met Guilin Geol &

    Min Co Ltd Guilin Key Lab Microelect Elect Mat &

    Biol Nanoma Guilin 541004 Peoples R China;

    China Monferrous Met Guilin Geol &

    Min Co Ltd Guilin Key Lab Microelect Elect Mat &

    Biol Nanoma Guilin 541004 Peoples R China;

    China Monferrous Met Guilin Geol &

    Min Co Ltd Guilin Key Lab Microelect Elect Mat &

    Biol Nanoma Guilin 541004 Peoples R China;

    China Monferrous Met Guilin Geol &

    Min Co Ltd Guilin Key Lab Microelect Elect Mat &

    Biol Nanoma Guilin 541004 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无机化学;
  • 关键词

    Induction plasma process; Silicon nanoparticles; Particle size; Si@Graphite composites; Li-ion batteries; Anode;

    机译:诱导等离子体工艺;硅纳米颗粒;粒度;Si @石墨复合材料;锂离子电池;阳极;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号