首页> 外文期刊>Shape memory and superelasticity >SMST2019: B2 => B19'=>B2~T Martensitic Transformation as a Mechanism of Plastic Deformation of NiTi
【24h】

SMST2019: B2 => B19'=>B2~T Martensitic Transformation as a Mechanism of Plastic Deformation of NiTi

机译:SMST2019:B2 => B19'=> B2〜T马氏体转换作为Niti塑性变形机制

获取原文
获取原文并翻译 | 示例
           

摘要

Deformation of superelastic NiTi wire with tailored microstructure was investigated in tensile loadingunloading tests up to the end of the stress plateau in wide temperature range from room temperature up to 200°C. Lattice defects left in the microstructure of deformed wires were investigated by transmission electron microscopy. Tensile deformation is localized up to the highest test temperatures, even if practically no martensite phase exists in the wire at the end of the stress plateau. In tensile tests at elevated temperatures around 100°C, at which the upper plateau stress approaches the yield stress for plastic deformation of martensite, upper plateau strains become unusually long, transformation strains become unrecoverable and deformation bands containing {114} austenite twins appear in the microstructure of deformed wires. These observations were rationalized by assuming activity of B2=>B19'=>B2~T martensitic transformation into the austenite twins representing a new mechanism of plastic deformation of NiTi, additional to the dislocation slip in austenite and/or martensite. It is claimed that this transformation becomes activated in any thermomechanical load in which the oriented B19' martensite is exposed to high stress at high temperatures, as e.g., during shape setting or actuator cycling at high applied stress.
机译:在拉伸管道中研究了具有量身定制的微观结构的超弹性NITI线的变形,从室温高达200°C的宽温度范围内的应力平台的末端。通过透射电子显微镜研究了变形线的微观结构中留下的晶格缺陷。拉伸变形是最高的测试温度的定位,即使实际上没有在压力平台末端存在的马氏体相位。在升高温度下的拉伸试验约100℃下,上平台应力接近马氏体塑性变形的屈服应力,上部高原菌株变得异常,转化株变得不可恢复,含有{114}奥氏体双胞胎的变形带出现在变形电线的微观结构。这些观察结果通过假设B2 => B19'=> B2〜T马氏体转化的活性在奥氏体双胞胎中的活性为代表尼氏菌酸盐和/或马氏体的脱位滑动另外,通过将B2 => B19'=> B2〜T马氏体转化转变为奥氏体双胞胎。要求保护该变换在任何热机械负载中被激活,其中定向的B19'马氏体暴露于高温下的高应力,如例如,在高施加应力下的形状设置或致动器循环期间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号