...
首页> 外文期刊>SIAM Journal on Control and Optimization >FRECHET DIFFERENTIABILITY OF UNSTEADY INCOMPRESSIBLE NAVIER-STOKES FLOW WITH RESPECT TO DOMAIN VARIATIONS OF LOW REGULARITY BY USING A GENERAL ANALYTICAL FRAMEWORK
【24h】

FRECHET DIFFERENTIABILITY OF UNSTEADY INCOMPRESSIBLE NAVIER-STOKES FLOW WITH RESPECT TO DOMAIN VARIATIONS OF LOW REGULARITY BY USING A GENERAL ANALYTICAL FRAMEWORK

机译:通过使用一般分析框架,不稳定不可达到的Navier-Stokes对低规律性的域变化的变化

获取原文
获取原文并翻译 | 示例
           

摘要

We consider shape optimization problems governed by the unsteady Navier Stokes equations by applying the method of mappings, where the problem is transformed to a reference domain Omega(ref) and the physical domain is given by Omega = tau (Omega(ref)) with a domain transformation tau is an element of W-1,W-infinity(Omega(ref)). We show the Frechet differentiability of tau -> (v, p) (tau) in a neighborhood of tau = id under as low regularity requirements on Omega(ref) and tau as possible. We propose a general analytical framework beyond the implicit function theorem to show the Frechet differentiability of the transformation to-state mapping conveniently. It can be applied to other shape optimization or optimal control problems and takes care of the usual norm discrepancy needed for nonlinear problems to show differentiability of the state equation and invertibility of the linearized operator. By applying the framework to the unsteady Navier Stokes equations, we show that for Lipschitz domains Omega(ref) and arbitrary r > 1, s > 0 the mapping tau is an element of (W-1,W-infinity (W-1,W-infinity boolean AND W-1+s,W-r) (Omega(ref)) -> (v, p)(tau) is an element of(W (0, T;V) + W(0, T;HI01)) x (L-2 (0,T; L-0(2)) + W-1,W-1(0,T;cl((H1)*)(L-0(2)))*) is Frechet differentiable at tau = id and the mapping tau is an element of (W1-infinity boolean AND (W-1+s,W-r) (Omega(ref)) -> (v, p) (tau) is an element of (L-2(0, T; H-0(1)) boolean AND C([0, T]; L-2) x (L-2(0, T; L-0(2)) + W-1,W-1(0,T;c1((H1)*)(L-0(2)))*) is Frechet differentiable on a neighborhood of id, where V subset of H-0(1)(Omega(ref)) is the subspace of solenoidal functions and W(0, T; V) is the usual space of weak solutions. A crucial role in the analysis plays the handling of the incompressibility condition and the low time regularity of the pressure for weak solutions.
机译:我们考虑通过应用映射方法来考虑不稳定的Navier Stokes方程来控制的形状优化问题,其中问题被转换为参考域Omega(REF),并且物理域由Omega = Tau(omega(REF))给出域变换TAU是W-1,W-Infinity(Omega(REF))的一个元素。我们展示了Tau = ID附近的Tau - >(v,p)(tau)的Frechet可差异,如欧米茄和tau的低规律性要求。我们提出了一个超出隐式功能定理之外的一般分析框架,以便方便地显示转换对状态映射的传感器的差异性。它可以应用于其他形状优化或最佳控制问题,并负责非线性问题所需的通常常规差异,以显示线性化操作员的状态方程和可逆性的可差异。通过将框架应用于不稳定的Navier Stokes方程,我们展示了Lipschitz域Omega(REF)和任意R> 1,S> 0映射Tau是(W-1,W-Infinity(W-1, W-Infinity Boolean和W-1 + S,WR)(OMEGA(REF)) - >(v,p)(tau)是(w(0,t; v)+ w(0,t; hi01)的元素)))x(L-2(0,T; L-0(2))+ W-1,W-1(0,T; Cl((H1)*)(L-0(2)))*)在Tau = ID和Mapping Tau的内货器是(W1-Infinity Boolean和(W-1 + S,WR)(Omega(Ref)) - >(v,p)(tau)是一个元素(L-2(0,T; H-0(1))布尔和C([0,T]; L-2)X(L-2(0,T; L-0(2))+ W-如图1所示,W-1(0,T; C1((H1)*)(L-0(2)))*)是ID邻域的IDERECET,其中V H-0(1)(omega( Ref))是电磁函数的子空间,W(0,T; V)是弱解决方案的通常空间。分析中的一个至关重要的作用在于处理不可压缩条件和弱解决方案压力的低时间规律性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号