...
首页> 外文期刊>Separation and Purification Technology >Enhanced visible-light-driven photoelectrochemical and photocatalytic performance of Au-SnO2 quantum dot-anchored g-C3N4 nanosheets
【24h】

Enhanced visible-light-driven photoelectrochemical and photocatalytic performance of Au-SnO2 quantum dot-anchored g-C3N4 nanosheets

机译:增强的可见光驱动的光电化学和光催化性能的Au-SnO2量子点锚定G-C3N4纳米蛋白酶

获取原文
获取原文并翻译 | 示例
           

摘要

A novel g-C3N4/Au-SnO2 quantum dot (g-CN/Au-SQD) ternary nanocomposite was fabricated via a three-step approach for the degradation of the organic pollutant rhodamine B (RhB), and photoelectrochemical (PEC) water splitting upon visible light illumination. Au-SQDs were prepared via a one-pot chemical reduction method, and g-CN was synthesized via the thermal polymerization of urea at 550 degrees C. The g-CN/Au-SQD ternary nanocomposite was prepared via sonication, stirring, and finally annealing. This approach was effective for the mixing and dispersion of Au-SQDs over the entire surface of the two-dimensional (2D) g-CN nanosheets. Morphological studies revealed that the Au-SQDs were well-distributed over the nanolayers of the g-CN. The light-capturing ability was improved and optimized with the loading of different amounts of Au-SQDs. The bandgap was tuned from 2.85 eV (g-CN) to 2.58 eV (g-CN/Au-SQD). Photoluminescence analysis revealed the inhibited nature of recombination of electrons and holes in the ternary nanocomposites. Optimization yielded CNAS-20, which exhibited the best photocatalytic performance within 40 min for the degradation of the pollutant RhB. Furthermore, the CNAS-20 photoelectrode showed lower charge-transfer resistance than the other prepared samples, which was favorable for PEC water splitting. The CNAS-20 photoelectrode exhibited a significant photocurrent, which was similar to 3.83 times greater than that of pure g-CN. Thus, this unique design incorporates a 2D g-CN and plasmonic Au metal nanoparticles for the generation of photoexcited electrons, and SQDs receive these photogenerated electrons to increase the leave-taking of electron and holes to enhance the photocatalytic and PEC activities.
机译:通过三步方法制造一种新的G-C3N4 / Au-SnO2量子点(G-CN / Au-SQD)三元纳米复合材料,用于有机污染物罗丹明B(RHB)的降解和光电化学(PEC)水分裂可见光照明。通过一锅化学还原方法制备AU-SQD,通过在550℃的尿素的热聚合中通过尿素的热聚合来合成G-CN。通过超声处理,搅拌,最后制备G-CN / Au-SQD三元纳米复合材料退火。这种方法对于Au-SQDS在二维(2D)G-CN纳米晶片的整个表面上的混合和分散是有效的。形态学研究表明,AU-SQD在G-CN的纳米层上分布得很好。利用不同量的AU-SQDS的加载,改善和优化了光捕获能力。带隙从2.85eV(G-CN)调谐到2.58eV(G-CN / AU-SQD)。光致发光分析显示了在三元纳米复合材料中的电子和孔的重组性质的抑制性质。优化产生CNA-20,其在40分钟内显示出最佳的光催化性能,以降解污染物RHB的降解。此外,CNA-20光电极显示比其他制备的样品更低的电荷转移电阻,这对于PEC水分解有利。 CNA-20光电极表现出显着的光电流,其类似于纯G-CN的3.83倍。因此,这种独特的设计包括2D G-CN和等离子体AU金属纳米颗粒用于产生光透射电子,并且SQD接收这些光生电子以增加电子和孔的休假,以增强光催化和PEC活性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号