首页> 美国卫生研究院文献>ACS Omega >Visible-Light-Driven PhotocatalyticActivity of SnO2–ZnO Quantum Dots Anchored on g-C3N4 Nanosheets for Photocatalytic Pollutant Degradationand H2 Production
【2h】

Visible-Light-Driven PhotocatalyticActivity of SnO2–ZnO Quantum Dots Anchored on g-C3N4 Nanosheets for Photocatalytic Pollutant Degradationand H2 Production

机译:可见光驱动的光催化固定在g-C3N4纳米片上的SnO2-ZnO量子点对光催化污染物降解的活性和氢气生产

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A zero-dimensional/two-dimensional heterostructure consists of binary SnO2–ZnO quantum dots (QDs) deposited on the surface of graphitic carbon nitride (g-C3N4) nanosheets. The so-called SnO2–ZnO QDs/g-C3N4 hybrid was successfully synthesized via an in situ co-pyrolysis approach to achieve efficient photoactivity for the degradation of pollutants and production of hydrogen (H2) under visible-light irradiation. High-resolution transmission electron microscopy images show the close contacts between SnO2–ZnO QDs with the g-C3N4 in the ternary SnO2–ZnO QDs/g-C3N4 hybrid. The optimized hybrid shows excellent photocatalytic efficiency, achieving 99% rhodamine B dye degradation in 60 min under visible-light irradiation. The enriched charge-carrier separation and transportation in the SnO2–ZnO QDs/g-C3N4 hybrid was determined based on electrochemical impedance and photocurrent analyses. This remarkable photoactivity is ascribed to the “smart” heterostructure, which yields numerous benefits, such as visible-light-driven fast electron and hole transfer, due to the strong interaction between the SnO2–ZnO QDs with the g-C3N4 matrix. In addition, the SnO2–ZnO QDs/g-C3N4 hybrid demonstrated a high rate of hydrogen production (13 673.61 μmol g–1), which is 1.06 and 2.27 times higher than that of the binary ZnO/g-C3N4 hybrid (12 785.54 μmol g–1) and pristine g-C3N4 photocatalyst (6017.72μmol g–1). The synergistic effect of increasedvisible absorption and diminished recombination results in enhancedperformance of the as-synthesized tin oxide- and zinc oxide-modifiedg-C3N4. We conclude that the present ternarySnO2–ZnO QDs/g-C3N4 hybridis a promising electrode material for H2 production andphotoelectrochemical cells.
机译:零维/二维异质结构由沉积在石墨氮化碳(g-C3N4)纳米片表面上的二元SnO2-ZnO量子点(QD)组成。通过原位共热解方法成功地合成了所谓的SnO2-ZnO QDs / g-C3N4杂化物,以实现有效的光活性,以在可见光照射下降解污染物并产生氢(H2)。高分辨率透射电子显微镜图像显示,在三元SnO2-ZnO QDs / g-C3N4杂化物中,SnO2-ZnO QD与g-C3N4之间紧密接触。优化后的杂种显示出优异的光催化效率,在可见光照射下60分钟内可实现99%罗丹明B染料降解。基于电化学阻抗和光电流分析,确定了SnO2-ZnO QDs / g-C3N4杂化物中富集的载流子分离和迁移。这种非凡的光活性归因于“智能”异质结构,由于SnO 2 -ZnO QD与强相互作用的强相互作用,产生了许多好处,例如可见光驱动的快速电子和空穴传输。 gC 3 N 4 矩阵。此外,SnO 2 -ZnO QDs / gC 3 N 4 杂化物表现出很高的产氢率(13 673.61μmolg –1 ),比二元ZnO / gC 3 N 4 杂种(12 785.54μmolg )高1.06倍和2.27倍–1 )和原始gC 3 N 4 光催化剂(6017.72μmolg –1 )。增效作用可见光吸收和重组减少导致增强合成的氧化锡和氧化锌改性后的性能g-C 3 N 4 。我们得出结论,目前的三元SnO 2 –ZnO QDs / g-C 3 N 4 杂种是用于H 2 生产的有希望的电极材料,光电化学电池。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号