...
首页> 外文期刊>ACS Omega >Visible-Light-Driven Photocatalytic Activity of SnO2–ZnO Quantum Dots Anchored on g-C3N4 Nanosheets for Photocatalytic Pollutant Degradation and H2 Production
【24h】

Visible-Light-Driven Photocatalytic Activity of SnO2–ZnO Quantum Dots Anchored on g-C3N4 Nanosheets for Photocatalytic Pollutant Degradation and H2 Production

机译:g-C3N4纳米片上固定的SnO2-ZnO量子点的可见光驱动光催化活性,用于光催化降解和制氢

获取原文
           

摘要

A zero-dimensional/two-dimensional heterostructure consists of binary SnO2–ZnO quantum dots (QDs) deposited on the surface of graphitic carbon nitride (g-C3N4) nanosheets. The so-called SnO2–ZnO QDs/g-C3N4 hybrid was successfully synthesized via an in situ co-pyrolysis approach to achieve efficient photoactivity for the degradation of pollutants and production of hydrogen (H2) under visible-light irradiation. High-resolution transmission electron microscopy images show the close contacts between SnO2–ZnO QDs with the g-C3N4 in the ternary SnO2–ZnO QDs/g-C3N4 hybrid. The optimized hybrid shows excellent photocatalytic efficiency, achieving 99% rhodamine B dye degradation in 60 min under visible-light irradiation. The enriched charge-carrier separation and transportation in the SnO2–ZnO QDs/g-C3N4 hybrid was determined based on electrochemical impedance and photocurrent analyses. This remarkable photoactivity is ascribed to the “smart” heterostructure, which yields numerous benefits, such as visible-light-driven fast electron and hole transfer, due to the strong interaction between the SnO2–ZnO QDs with the g-C3N4 matrix. In addition, the SnO2–ZnO QDs/g-C3N4 hybrid demonstrated a high rate of hydrogen production (13?673.61 μmol g–1), which is 1.06 and 2.27 times higher than that of the binary ZnO/g-C3N4 hybrid (12?785.54 μmol g–1) and pristine g-C3N4 photocatalyst (6017.72 μmol g–1). The synergistic effect of increased visible absorption and diminished recombination results in enhanced performance of the as-synthesized tin oxide- and zinc oxide-modified g-C3N4. We conclude that the present ternary SnO2–ZnO QDs/g-C3N4 hybrid is a promising electrode material for H2 production and photoelectrochemical cells.
机译:零维/二维异质结构由沉积在石墨氮化碳(g-C3N4)纳米片表面上的二元SnO2-ZnO量子点(QD)组成。通过原位共热解方法成功地合成了所谓的SnO2-ZnO QDs / g-C3N4杂化物,以实现有效的光活性,以在可见光照射下降解污染物并产生氢(H2)。高分辨率透射电子显微镜图像显示,三元SnO2-ZnO QDs / g-C3N4杂化物中SnO2-ZnO QD与g-C3N4之间紧密接触。优化后的杂种显示出优异的光催化效率,在可见光照射下60分钟内可实现99%罗丹明B染料降解。基于电化学阻抗和光电流分析,确定了SnO2-ZnO QDs / g-C3N4杂化物中富集的载流子分离和迁移。这种非凡的光活性归因于“智能”异质结构,由于SnO2-ZnO量子点与g-C3N4基质之间的强相互作用,因此产生了许多好处,例如可见光驱动的快速电子和空穴传输。此外,SnO2-ZnO QDs / g-C3N4杂合体显示出高的产氢率(13?673.61μmolg-1),比二元ZnO / g-C3N4杂合体的氢生成率高1.06和2.27倍(12 ?785.54μmolg-1)和原始g-C3N4光催化剂(6017.72μmolg-1)。可见光吸收增加和重组减少的协同作用导致刚合成的氧化锡和氧化锌改性的g-C3N4的性能增强。我们得出的结论是,目前的三元SnO2-ZnO QDs / g-C3N4杂化物是用于H2生产和光电化学电池的有前途的电极材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号