首页> 外文期刊>Separation and Purification Technology >Synergetic effect of g-C3N4/ZnO binary nanocomposites heterojunction on improving charge carrier separation through 2D/1D nanostructures for effective photocatalytic activity under the sunlight irradiation
【24h】

Synergetic effect of g-C3N4/ZnO binary nanocomposites heterojunction on improving charge carrier separation through 2D/1D nanostructures for effective photocatalytic activity under the sunlight irradiation

机译:G-C3N4 / ZnO二元纳米复合材料异质结来改善电荷载体分离通过2D / 1D纳米结构在阳光照射下的有效光催化活性的协同作用

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The heterojunction between the two different semiconductors shown to increase the photocatalytic activity due to their ability in improving the photo-generated electron-hole pairs separation. Hence designing and synthesizing such heterojunctions employing different semiconducting materials to improve the photocatalytic efficiency using various methods have gained importance. For this purpose graphitic like carbon nitride (g-C3N4) is a hopeful photocatalytic material for environmental remediation but its photogenerated charge carriers recombination rate limits g-C3N4 for practical applications. Hence, in the present work we synthesized heterojunction of g-C3N4/ZnO binary nanocomposites in 2D/1D by sonication assisted hydrothermal method. X-ray diffraction analysis confirms the formation of g-C3N4/ZnO binary nanocomposites. Transmission electron microscope analysis shows that the binary nanocomposites consists ZnO rods coupled with sheet like structure of g-C3N4. The band gap of g-C3N4 is 2.67 eV; however, the g-C3N4/ZnO binary nanocomposites shifts the band gap to 2.9 eV. Photoluminescence spectral analysis evidently shows the recombination rate of electron-hole pairs in the g-C3N4/ZnO binary nanocomposites is effectively reduced due to the formation of the heterojunction. The photoelectrochemical analysis shows that g-C3N4/ZnO binary nanocomposites enhance the photocurrent to 1.5 mu A and effectively separate the electron-hole pairs when compared with that of bare ZnO and g-C3N4. Hence, the g-C3N4/ZnO binary nanocomposites effectively enhanced RhB dye degradation to 99% for 20 min and enhanced the 4-chlorophenol degradation to 90% for 40 min. under the sunlight irradiation.
机译:由于其改善光产生的电子空穴对分离而导致的两种不同半导体之间的异质结增加了光催化活性。因此,设计和合成采用不同半导体材料的这种异质结,以通过各种方法提高光催化效率已经获得了重要性。为此目的,石墨如碳氮化物(G-C3N4)是一种用于环境修复的有希望的光催化材料,但其光静电载体复合速率限制了G-C3N4的实际应用。因此,在本作工作中,我们通过超声处理辅助水热法在2D / 1D中合成G-C3N4 / ZnO二元纳米复合材料的异质结。 X射线衍射分析证实了G-C3N4 / ZnO二元纳米复合材料的形成。透射电子显微镜分析表明,二元纳米复合材料由ZnO棒与G-C3N4的片材相连。 G-C3N4的带隙是2.67eV;但是,G-C3N4 / ZnO二进制纳米复合材料将带隙移至2.9eV。光致发光光谱分析明显显示G-C3N4 / ZnO二元纳米复合材料中的电子 - 空穴对的重组率由于异质结的形成而有效地降低。光电化学分析表明,与裸ZnO和G-C3N4相比,G-C3N4 / ZnO二元纳米复合材料增强至1.5μA的光电流至1.5μA,有效地分离电子孔对。因此,G-C3N4 / ZnO二元纳米复合材料有效地增强了RHB染料降解至99%,持续20分钟,并增强了4-氯苯酚降解至90%持续40分钟。在阳光照射下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号