首页> 外文期刊>Semiconductors >Precession of Magnetization of a Spin-Valve Free Layer and Its Switching under the Effect of a Magnetic Field Perpendicular to the Anisotropy Axis
【24h】

Precession of Magnetization of a Spin-Valve Free Layer and Its Switching under the Effect of a Magnetic Field Perpendicular to the Anisotropy Axis

机译:在垂直于各向异性轴的磁场的效果下,旋转阀自由层的磁化和其切换的磁化。

获取原文
获取原文并翻译 | 示例
           

摘要

Modern microelectronic devices based on layered spin-valve structures have low power inputs, a high reliability, and a broad temperature range. Studying dynamic spin-valve modes and the possibilities of controlling these modes are of practical interest. In this work, the operating modes of a spin valve, which comprise the base for magnetoresistive random-access memory (MRAM), a binary stochastic neuron (p-bit), and various spin-transfer nanooscillators (STNOs) are considered. A mathematical model of the spin valve with longitudinal anisotropy placed into a magnetic field parallel to the anisotropy axis and perpendicular to the plane of layers is constructed. A set of equations that describe the dynamics of the magnetization vector of the free layer of the spin valve is derived. Quantitative analysis of the set of equations enables determination of the equilibrium positions of magnetization of the free layer for the spin-valve structure. The conditions for changing the type of singular points of the dynamic set of equations are found based on the bifurcation analysis of the set. Investigation into the dynamics of the magnetization vector of the free layer of a spin valve enables determination of its main operational modes as the component of the magnetoresistive random access memory, binary stochastic neuron, and spin-transfer nanooscillator, as well as the ranges of the current and magnetic field corresponding to these modes. The frequency and amplitude characteristics are calculated for spin-valve oscillators. The proposed structure with anisotropy located in a field perpendicular to the anisotropy axis is more preferable when compared to a structure with a field applied parallel to the anisotropy axis from the viewpoint of its application as the spin-transfer nanooscillator.
机译:基于分层旋转阀结构的现代微电子器件具有低功率输入,可靠性高,宽温度范围。研究动态旋转阀模式和控制这些模式的可能性具有实际兴趣。在这项工作中,考虑旋转阀的操作模式,其包括用于磁阻随机存取存储器(MRAM)的基部,二进制随机神经元(P孔)和各种旋转转移纳米振子(STNO)。构建了旋转阀的旋转阀的数学模型,其纵向各向异性放入平行于各向异性轴线并垂直于层平面的磁场中。衍生一组描述旋转阀的自由层的磁化矢量的动态的等式。该等式的定量分析能够确定自由层的自由层的磁化的平衡位置,用于旋转阀结构。基于该集合的分岔分析,找到改变动态方程集的奇点类型的条件。调查旋转阀的自由层的磁化矢量的动力学能够确定其主要操作模式作为磁阻随机存取存储器,二元随机神经元和旋转转移纳米碳粉座的组件,以及对应于这些模式的电流和磁场。为旋转阀振荡器计算频率和幅度特性。与具有与各向异性轴线的场的结构相比,更优选地位于垂直于各向异性轴线的区域中的各向异性的所提出的结构更优选从其应用作为旋转转移纳米载体的视点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号