首页> 外文期刊>SAE International Journal of Engines >Fast-Running Autoignition Model for Diesel Combustion Modeling and Control, Based on Detailed Reaction Kinetics Simulation
【24h】

Fast-Running Autoignition Model for Diesel Combustion Modeling and Control, Based on Detailed Reaction Kinetics Simulation

机译:基于详细的反应动力学模拟,柴油燃烧建模与控制快速运行的自燃模型

获取原文
获取原文并翻译 | 示例
           

摘要

Detailed and reduced kinetic mechanisms have been proposed for description of the complex chemistry of autoignition processes of n-heptane, as a representative diesel fuel. These kinetic models are attractive for a detailed 3-D CFD or multi-zone simulation, however the simulation time is normally not affordable for phenomenological engine process modeling. For phenomenological combustion models, typically single-to multiple-step Arrhenius equations are used to model the autoignition processes. Based on the number of Arrhenius equations and model structure the low-temperature, high-temperature and the negative temperature coefficient (NTC) behavior can be modeled. For diesel engine simulation modeling the ignition delay using Arrhenius equation(s) and a Livengood-Wu integration can deliver fairly good results, depending on the number of equations and calibration of constant parameters. However, it needs integration, as in-cylinder pressure and temperature change in each time step, due to e.g. piston movement. The aim of this study is development of a novel autoignition model for diesel fuel combustion which can be used for efficient and fast-running combustion modeling. The presented model is based on simulation results using realistic diesel engine geometry under various operating conditions. Detailed chemical reactions of the ignition processes are solved by a n-heptane mechanism which is coupled to the thermodynamic simulation of in-cylinder processes during the compression and autoignition phases. All relevant engine operating conditions, like engine speed, in-cylinder charge mass and temperature as well as the EGR ratio are varied and ignition delay times are calculated. Using a large number of simulation results, a very-fast running ignition delay model is trained and validated against detailed reaction kinetics simulation results. The developed autoignition model can reproduce the results using engine and detailed reaction kinetics simulation with a very good accuracy. As next step, the developed autoignition model is implemented into a phenomenological combustion model. Experimental investigations are carried out on a single-cylinder heavy-duty diesel engine for validation of the developed model. Finally, advantages of using the proposed novel ignition delay model for combustion control in the next generation of the engine control units are discussed.
机译:已经提出了详细的和降低的动力学机制,用于描述正庚烷的复杂化学性,作为代表性柴油燃料。这些动力学模型对于详细的3-D CFD或多区仿真是有吸引力的,但是模拟时间通常不适合现象发动机过程建模。对于现象学燃烧模型,通常单对多步Arhenius方程用于建模自燃过程。基于Arrhenius方程的数量和模型结构,可以对低温,高温和负温度系数(NTC)行为进行建模。对于柴油发动机仿真,使用Arrhenius方程和Livengood-Wu集成建模点火延迟,可以提供相当良好的结果,具体取决于恒定参数的方程数和校准。然而,由于例如,它需要整合,如每次步骤中的缸内压力和温度变化。活塞运动。本研究的目的是开发用于柴油燃料燃烧的新型自燃模型,可用于高效且快速运行的燃烧建模。所呈现的模型基于在各种操作条件下使用逼真的柴油发动机几何形状的仿真结果。点火过程的详细化学反应通过N-庚烷机构求解,该正庚烷机构耦合到压缩和自燃阶段的缸内过程的热力学模拟。所有相关发动机操作条件,如发动机速度,缸内充电质量和温度以及EGR比率都是变化的,并且计算点火延迟时间。使用大量的仿真结果,培训了一个非常快速的运行点火延迟模型并验证了详细的反应动力学仿真结果。开发的自燃模型可以使用发动机和详细的反应动力学仿真来再现结果,具有非常好的精度。如下一步,开发的自燃模型被实施为现象学燃烧模型。在单缸重型柴油发动机上进行实验研究,用于验证开发的模型。最后,讨论了在下一代发动机控制单元中使用所提出的新型点火延迟模型的燃烧控制的优点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号