首页> 外文期刊>SAE International Journal of Engines >Modelling and Numerical Simulation of Dual Fuel Lean Flames Using Local Burning Velocity and Critical Chemical Timescale
【24h】

Modelling and Numerical Simulation of Dual Fuel Lean Flames Using Local Burning Velocity and Critical Chemical Timescale

机译:用局部燃烧速度和批判化学尺度模拟双燃料瘦火焰的建模与数值模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Addition of hydrogen to hydrocarbons in premixed turbulent combustion is of technological interest due to their increased reactivity, flame stability and extended lean extinction limits. However, such flames are a challenge to reaction modelling, especially as the strong preferential diffusion effects modify the physical processes, which are of importance even for highly turbulent high-pressure conditions. In the present work, Reynolds-averaged Navier-Stokes (RANS) modelling is carried out to investigate pressure and hydrogen content on methane/hydrogen/air flames. For this purpose, four different subclosures, used in conjunction with an algebraic reaction model, are compared with two independent sets of experimental data: (1) Orleans data consists of pressures up to 9 bar, with addition of hydrogen content by up to 20% in hydrogen/methane mixture, for moderate turbulence intensities. 2) The Paul Scherrer Institute data includes same fuels with higher volume proportion of hydrogen (40%), at much higher turbulent intensities at 5 bar. The first model Model I is based solely on the increased reactivity of the hydrogen/methane mixture under laminar conditions. It shows that the increase of unstretched laminar burning velocity (S_(LO)) is not sufficient to describe the increased reactivity in turbulent situations. This non-corroboration proves the importance of preferential diffusion effects in highly turbulent flames. Models II and III are formulated based on the localized increase in S_(LO), local burning velocity which is a strong function of local curvature and flow strain. Model II overpredicts the reactivity for higher pressures. Model III accurately predicts for nearly all studied flame conditions. Model IV is based on the leading point concept (LPC) that the leading part of the turbulent flame brush is more important than the rear part of premixed flame with the Lewis number less than unity. This model in its present formulation underpredicts the average reaction rate compared with experiments.
机译:由于其增加的反应性,火焰稳定性和延长的贫化限制,将氢气加入预混湍流燃烧中的烃与技术兴趣。然而,这种火焰对反应建模是挑战,特别是随着强大的优先扩散效果改变物理过程,即使对于高度湍流的高压条件也是重要的。在本作工作中,进行雷诺平均Navier-Stokes(RANS)建模,以研究甲烷/氢气/空气火焰上的压力和氢含量。为此目的,与代数反应模型结合使用的四个不同的亚型亚空间,与两组独立的实验数据相比:(1)奥尔良数据包括高达9巴的压力,加入氢含量高达20%在氢气/甲烷混合物中,用于中等湍流强度。 2)Paul Scherrer研究所数据包括具有较高体积比例的氢气(40%)的相同燃料,在5巴的湍流强度下具有更高的湍流强度。第一模型模型I仅基于层状条件下氢/甲烷混合物的反应性增加。它表明,未拉伸层状燃烧速度的增加(S_(LO))不足以描述湍流情况的增加的反应性。这种非核状证明了在高湍流火焰中的优先扩散效应的重要性。模型II和III基于S_(LO),局部燃烧速度的局部增加,是局部曲率和流动应变的强函数。模型II过度估计更高压力的反应性。 III型准确预测几乎所有研究的火焰条件。型号IV基于领先点概念(LPC),即湍流火焰刷的领先部分比预混合火焰的后部更重要,刘易斯数小于单位。该模型在其目前的制剂下降于与实验相比的平均反应速率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号