...
首页> 外文期刊>Sadhana: Academy Proceedings in Engineering Science >A study of energy transfer during water entry of solids using incompressible SPH simulations
【24h】

A study of energy transfer during water entry of solids using incompressible SPH simulations

机译:使用不可压缩的SPH模拟在水处理水处理中的能量转移研究

获取原文
获取原文并翻译 | 示例
           

摘要

Cavity formation during water entry of a solid corresponds to the deceleration experienced by the solid. Several experimental studies in the past have facilitated qualitative understanding of the relation between flow and impact properties and the type of cavity formed. The types of cavities formed are classified primarily based on the nature of the seal, such as (a) surface seal, (b) deep seal, (c) shallow seal and (d) quasi-static seal. The flow mechanism behind these features and their effects on the speed of the impacting solid require further quantitative understanding. A study of such phenomenon is difficult using the existing CFD techniques owing to the fact that the high density ratios between the two phases, namely water and air, bring in issues with respect to the convergence of the linear system used to solve for the pressure field for a divergence-free velocity field. Based on a free surface modeling method, we present Incompressible Smoothed Particle Hydrodynamics (ISPH) simulations of water entry of two-dimensional solids of different shapes, densities and initial angular momenta. From the velocity field of the fluid and shape of the cavity, we relate the transfer of kinetic energy from the solid to the fluid through different phases of the cavity formation. Finally, we present a three-dimensional simulation of water entry to assert the utility of the method for analysis of real life water entry scenarios.
机译:固体的水处理期间的腔形成对应于固体所经历的减速。过去的几项实验研究已经促进了对流动和冲击性能与形成的腔的关系的定性理解。形成的空腔类型主要基于密封的性质,例如(a)表面密封,(b)深封,(c)浅密封和(d)准静态密封。这些特征背后的流动机制及其对冲击固体速度的影响需要进一步的定量理解。使用现有的CFD技术难以使用现有的CFD技术,因为这两个阶段,即水和空气之间的高密度比引起了用于求解压力场的线性系统的收敛性的问题用于无分离速度场。基于自由表面建模方法,我们提出了不可压缩的平滑粒子流体动力学(ISWH)模拟不同形状,密度和初始角动势的二维固体的水分入口。从腔的流体和形状的速度场,通过不同的腔形成阶段将动能从固体转移到流体。最后,我们展示了水入口的三维模拟,以证明现实生活水入学方案分析方法的效用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号