首页> 外文期刊>Sadhana >A study of energy transfer during water entry of solids using incompressible SPH simulations
【24h】

A study of energy transfer during water entry of solids using incompressible SPH simulations

机译:使用不可压缩的SPH模拟研究固体进水过程中的能量转移

获取原文
           

摘要

Cavity formation during water entry of a solid corresponds to the deceleration experienced by the solid. Several experimental studies in the past have facilitated qualitative understanding of the relation between flow and impact properties and the type of cavity formed. The types of cavities formed are classified primarilybased on the nature of the seal, such as (a) surface seal, (b) deep seal, (c) shallow seal and (d) quasi-static seal. The flow mechanism behind these features and their effects on the speed of the impacting solid require further quantitative understanding. A study of such phenomenon is difficult using the existing CFD techniques owing to the fact that the high density ratios between the two phases, namely water and air, bring in issues with respect to the convergence of the linear system used to solve for the pressure field for a divergence-free velocity field.Based on a free surface modeling method, we present Incompressible Smoothed Particle Hydrodynamics (ISPH) simulations of water entry of two-dimensional solids of different shapes, densities and initial angular momenta.From the velocity field of the fluid and shape of the cavity, we relate the transfer of kinetic energy from the solid to the fluid through different phases of the cavity formation. Finally, we present a three-dimensional simulation of water entry to assert the utility of the method for analysis of real life water entry scenarios.
机译:固体进入水期间的空腔形成对应于固体经历的减速度。过去的几项实验研究促进了对流动性和冲击性能之间的关系以及所形成的腔体类型的定性理解。所形成的空腔类型主要根据密封的性质进行分类,例如(a)表面密封,(b)深密封,(c)浅密封和(d)准静态密封。这些特征背后的流动机理及其对撞击固体速度的影响需要进一步定量了解。由于两相(水和空气)之间的高密度比会带来用于解决压力场的线性系统收敛的问题,因此使用现有的CFD技术很难研究这种现象。基于自由表面建模方法,我们提出了形状,密度和初始角动量不同的二维固体进入水的不可压缩平滑粒子流体动力学(ISPH)模拟。流体和腔体的形状,我们将动能通过腔体形成的不同阶段从固体传递到流体。最后,我们提出了水进入的三维模拟,以断言该方法在分析现实生活中的水进入场景时的效用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号