...
首页> 外文期刊>Agricultural and Forest Meteorology >A lightweight, low cost autonomously operating terrestrial laser scanner for quantifying and monitoring ecosystem structural dynamics
【24h】

A lightweight, low cost autonomously operating terrestrial laser scanner for quantifying and monitoring ecosystem structural dynamics

机译:轻巧,低成本的自主运行的地面激光扫描仪,用于量化和监测生态系统结构动力学

获取原文
获取原文并翻译 | 示例
           

摘要

The three-dimensional (3-D) structure of ecosystems is inherently dynamic. However, this is often ignored in ecological studies because it is difficult to characterize using traditional field methods. Terrestrial laser scanning (TLS) is a rapidly maturing technique to complement and enhance traditional field methods for quantifying 3-D geometric properties of ecosystems. Two major limitations of TLS include the low temporal resolution that often exists between each data acquisition, and the relatively high cost of such systems (entry level systems cost >$40,000 USD) that puts this method out of reach for many potential users. Consequently, TLS is currently limited as a mainstream method for capturing 3-D geometric ecosystem dynamics. The objectives of this study were to (i) describe the design of a lightweight (3.85 kg), low-cost ($<12,000 USD), autonomously operating terrestrial laser scanner (ATLS) and to (ii) test its ability to provide data to quantify and monitor ecological characteristics that exhibit structural change. We tested the utility of the ATLS data to quantify plant growth by measuring plants with different heights and diameter at breast height (DBH). Specifically, we derived the canopy heights of a conifer tree (Engelmann spruce, Picea engelmannii), broadleaf tree (Quaking aspen, Populus tremuloides), graminoid (Calamagrostis x acutiflora), and forb (Hemerocallis lilioasphodelus), and the DBH of Ponderosa Pine (Pinus ponderosa) and Douglas-fir (Pseudotsuga menziesii) trees. The ATLS was also tested under varying weather conditions (including rain, snowfall and temperature ranging from -9.1 to 21.1 degrees C), to quantify canopy structural changes in quaking aspen during leaf drop relative to a Ponderosa Pine that retained its leaves over the same time period. We also compared canopy structural changes quantified by ATLS canopy laser returns with those quantified using a commercial TLS. Our results showed strong agreements between observed and ATLS derived conifer tree canopy height (RMSE = 0.96 cm, r(2) = 1.00, slope = 0.96, intercept = 1.43), broadleaf tree canopy height (RMSE = 0.08 m, r(2) = 0.99, slope = 1.01, intercept = -0.38), graminoid and forb canopy height (RMSE = 1.56 cm, r(2) = 0.98, slope = 1.04, intercept = -2.22), and DBH (RMSE = 2.24 cm, r(2) = 0.99, slope = 0.99, intercept = 0.45). A strong relationship (r(2) = 0.86) also existed between the number of TLS and ATLS canopy laser returns. Our results indicate that the ATLS is suitable for monitoring and quantifying dynamics of plant growth and potentially many other 3-D properties of ecosystems. While further research is needed to better understand the effect of scan resolution, beam divergence, and atmospheric conditions on the accuracy of ATLS derived metrics, this instrument has great promise for providing new insights into dynamic ecosystem processes that are currently difficult to monitor at high temporal and spatial resolution
机译:生态系统的三维(3-D)结构本质上是动态的。但是,这在生态学研究中经常被忽略,因为使用传统的野外方法很难对其进行表征。陆地激光扫描(TLS)是一种快速成熟的技术,可以补充和增强用于量化生态系统3-D几何特性的传统现场方法。 TLS的两个主要限制包括每次数据获取之间通常存在的低时间分辨率,以及此类系统的相对较高成本(入门级系统成本> 40,000美元),这使许多潜在用户无法使用此方法。因此,TLS目前作为捕获3-D几何生态系统动态的主流方法受到限制。这项研究的目的是(i)描述重量轻(3.85千克),低成本($ 12,000美元),自主运行的地面激光扫描仪(ATLS)的设计,以及(ii)测试其提供数据的能力量化和监测表现出结构变化的生态特征。我们测试了ATLS数据的实用性,以通过测量不同高度和胸高(DBH)直径的植物来量化植物生长。具体来说,我们推导了针叶树(Engelmann云杉,云杉云杉),阔叶树(Quaking白杨,胡杨木),禾本科类动物(Calamagrostis x acutiflora)和forb(Hemerocallis lilioasphodelus)和黄松(DBH)的冠层高度。松树和花旗松(Pseudotsuga menziesii)树。还对ATLS在不同的天气条件(包括降雨,降雪和-9.1到21.1摄氏度的温度)下进行了测试,以量化相对于同时保留其叶子的黄松(Ponderosa Pine),在叶子掉落期间地震白杨的冠层结构变化。期。我们还比较了通过ATLS冠层激光返回量化的冠层结构变化与使用商业TLS量化的冠层结构变化。我们的结果表明,观察到的和ATLS衍生的针叶树冠层高度(RMSE = 0.96 cm,r(2)= 1.00,坡度= 0.96,截距= 1.43),阔叶树冠层高度(RMSE = 0.08 m,r(2) = 0.99,坡度= 1.01,截距= -0.38),格拉米诺娃和福布的树冠高度(RMSE = 1.56 cm,r(2)= 0.98,坡度= 1.04,截距= -2.22)和DBH(RMSE = 2.24 cm,r (2)= 0.99,斜率= 0.99,截距= 0.45)。 TLS和ATLS机盖激光返回的数量之间也存在很强的关系(r(2)= 0.86)。我们的结果表明,ATLS适用于监视和量化植物生长的动态以及生态系统的许多其他3-D特性。尽管需要进一步研究以更好地了解扫描分辨率,光束发散度和大气条件对ATLS衍生度量的准确性的影响,但该仪器具有巨大的前景,可为动态生态系统过程提供新见识,而这些生态系统过程目前很难在高时间进行监控和空间分辨率

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号