...
首页> 外文期刊>Aerosol Science and Technology: The Journal of the American Association for Aerosol Research >Modeling entry of micron-sized and submicron-sized particles into the indoor environment
【24h】

Modeling entry of micron-sized and submicron-sized particles into the indoor environment

机译:模拟微米级和亚微米级颗粒进入室内环境的过程

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A theoretical approach,based on particle dynamics,was used to examine the outdoor-to-indoor penetration coefficient (P) of fine particles inside thin rectangular cracks.Parallel-plate flow theory indicates that crack infiltration flow can be assumed laminar for long,thin rectangular cracks.Considering laminar cracks flow,three particle penetration models were used to estimate P.They are the Licht model,the Fuchs model,and the Taulbee model.The first two models consider gravitational sedimentation as the particle deposition mechanism,while the third model considers particle deposition induced from both gravitational sedimentation and Brownian diffusion.Modeling results indicate that gravitational sedimentation governs particle deposition behavior for micron-sized particles,and that all three models can be used to model penetration for these particles.For submicron-sized particles,Brownian diffusion becomes the major deposition mechanism,and only the Taulbee model is suitable to model particle penetration.The Taulbee model was validated using published experimental results of other researchers.Model validation indicated that the Taulbee model satisfactorily estimates particle penetration for micron-sized and submicron-sized particles.Application of the three models to actual building penetration is discussed.
机译:一种基于粒子动力学的理论方法被用来检验细小矩形裂纹内部细小颗粒的室外到室内的渗透系数。平行板流动理论表明,裂纹渗入流可以假定为长而薄的层流。考虑层流裂纹流动,使用了三个粒子渗透模型来估计P.它们是Licht模型,Fuchs模型和Taulbee模型。前两个模型将重力沉降视为颗粒沉积机理,而第三个模型模拟结果表明,重力沉降决定了微米级颗粒的颗粒沉积行为,并且所有三个模型都可以用来模拟这些颗粒的渗透。对于亚微米级颗粒,Brownian扩散成为主要的沉积机制,只有Taulbee模型适合于模拟pa利用其他研究人员发表的实验结果验证了Taulbee模型的有效性。模型验证表明Taulbee模型令人满意地估计了微米级和亚微米级颗粒的颗粒渗透率,并讨论了这三种模型在实际建筑物渗透中的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号