首页> 外文期刊>Neural computing & applications >Neural network modeling of in situ fluid-filled pore size distributions in subsurface shale reservoirs under data constraints
【24h】

Neural network modeling of in situ fluid-filled pore size distributions in subsurface shale reservoirs under data constraints

机译:数据约束下地下页岩储层中原位流体填充孔径分布的神经网络建模

获取原文
获取原文并翻译 | 示例
           

摘要

Subsurface nuclear magnetic resonance (NMR) logs acquired in the wellbore environment are sensitive to fluid-filled pore size distribution, fluid mobility, permeability, and porosity in the near-wellbore reservoir volume. NMR response of a formation layer is processed to extract the T2 distribution, which approximates the fluid-filled pore size distribution. NMR logs are acquired in limited number of wells due to financial and operational challenges, which adversely affects reservoir characterization. We developed two neural-network-based machine learning techniques, long short-term memory (LSTM) network and variational autoencoder with a convolutional layer (VAEc) network, to process the 'easy-to-acquire' formation mineral and fluid saturation logs to generate synthetic NMR T2 distributions in the absence of 'hard-to-acquire' NMR T2 distribution log. Both the predictive models are trained and tested on limited wireline log measurements randomly selected from a 300-ft depth interval of the Bakken shale formation. Synthesis performances of LSTM and VAEc models in terms of R-2 are 0.78 and 0.75, respectively. Noise is inevitable in logging data due to the complex wellbore and formation conditions. Notably, both the predictive models robustly synthesize the fluid-filled pore size distributions in the presence of 50% noise in input logs and 30% noise in training T2 data. The performance of the proposed methodology improves with access to larger volume of training data from other formation types. The proposed method is critical to the synthesis of in situ fluid-filled pore size distributions in shale formations under data constraints due to financial and operational challenges.
机译:在井眼环境中获得的地下核磁共振(NMR)原木对井眼储层体积的流体填充的孔径分布,流体迁移率,渗透率和孔隙率敏感。处理形成层的NMR响应以提取T2分布,其近似于流体填充的孔径分布。由于金融和运营挑战,NMR日志在有限数量的井中获得,这对储层表征产生不利影响。我们开发了两台神经网络的机器学习技术,长短短期内存(LSTM)网络和变形自动化器,具有卷积层(VAEC)网络,以处理“易于获取”的形成矿物和流体饱和度原木在没有“难以获取”NMR T2分配日志的情况下,生成合成NMR T2分布。预测模型都在受到限制的有限电线日志测量上培训和测试,从而从Bakken页岩形成的300英尺深度间隔中随机选择。 LSTM和VAEC模型在R-2方面的合成性能分别为0.78和0.75。由于复杂的井筒和形成条件,噪音在测井数据中是不可避免的。值得注意的是,预测模型既有50%噪声在输入日志中的50%噪声的存在下鲁棒地合成流体填充的孔径分布,训练T2数据中的30%噪声。所提出的方法的性能可以通过访问来自其他形成类型的更大体积的培训数据来改进。该方法对于由于金融和运营挑战,在数据限制下,在数据限制下的原位流体填充孔径分布的合成至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号