...
首页> 外文期刊>Lab on a chip >Microfluidic approaches for probing amyloid assembly and behaviour
【24h】

Microfluidic approaches for probing amyloid assembly and behaviour

机译:用于探测淀粉样蛋白组装和行为的微流体方法

获取原文
获取原文并翻译 | 示例
           

摘要

The self-assembly of proteins into supramolecular structures and machinery underpins biological activity in living systems. Misassembled, misfolded and aggregated protein structures can, by contrast, have deleterious activity and such species are at the origin of a number of disease states ranging from cancer to neurodegenerative disorders. In particular, the formation of highly ordered protein aggregates, amyloid fibrils, from normally soluble peptides and proteins, is the common pathological hallmark of a range a group of over fifty protein misfolding disorders. Because of the critical role of the process in the aetiology of such disorders, as well as the quest to understand the basic principles of protein folding and misfolding, the amyloid phenomenon has become a central area of modern biomedical research. Advances in our knowledge of the physical properties of amyloid systems have, however, also highlighted the potential of amyloid structures in the context of materials science. In this review, we explore how microfluidic approaches can be used to study aspects of amyloid assembly and behaviour that are challenging to probe under bulk solution conditions. We discuss the use of volume confinement to probe very early events in the amyloid formation process. In addition, the well-defined fluid flow properties within channels with dimensions on the micron scale can be exploited to measure the physical properties of protein aggregates, such as their sizes and charges, to shed light on the physical and chemical parameters defining amyloid species. Moreover, the molecular species formed during aggregation reactions have physical dimensions spanning at least three orders of magnitude, and microfluidic techniques are well suited to work with analytes of such disparate dimensions. Furthermore, the flexibility of the design of microfluidic devices lends itself to adaptable experimental setups, including the study of protein self-assembly within living cells. Finally, we highlight the salient features of microfluidic experiments that facilitate probing complex biological systems, and discuss their use in the exploration of amyloids as a class of functional material.
机译:蛋白质的自组装进入超分子结构和机械的生物活性系统中的生物活性。相比之下,误解,错误折叠和聚集的蛋白质结构可以具有有害活性和这些物种是从癌症到神经变性障碍的许多疾病状态的起源。特别地,高度有序的蛋白质聚集体,淀粉样蛋白原纤维,来自通常可溶性肽和蛋白质的形成是一组超过五十蛋白错误折叠疾病的常见病理标志。由于该过程在这种疾病的疾病中的关键作用,以及寻求了解蛋白质折叠和错误折叠的基本原理,淀粉样蛋白现象已成为现代生物医学研究的中心区域。然而,我们对淀粉样蛋白系统的物理性质的研究进展也强调了材料科学背景下淀粉样蛋白结构的潜力。在本综述中,我们探讨了如何用于研究淀粉样蛋白组装和行为的方面如何在散装溶液条件下挑战探针的行为。我们讨论使用体积限制来探测淀粉样蛋白形成过程中的早期事件。另外,可以利用尺寸在微米尺度上的通道内的明确定义的流体流动性能,以测量蛋白质聚集体的物理性质,例如它们的尺寸和电荷,以在定义淀粉样物种的物理和化学参数上的荧光。此外,聚集反应期间形成的分子种具有跨越至少三个数量级的物理尺寸,并且微流体技术非常适合于与这种不同尺寸的分析物合作。此外,微流体装置设计的灵活性使其自身适应适应的实验设置,包括在活细胞内的蛋白质自组装的研究。最后,我们突出了微流体实验的突出特征,便于探测复杂的生物系统,并探讨了它们在淀粉样蛋白探索作为一类功能材料的用途。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号