首页> 外文期刊>Lab on a chip >Microfluidic bypass manometry: highly parallelized measurement of flow resistance of complex channel geometries and trapped droplets
【24h】

Microfluidic bypass manometry: highly parallelized measurement of flow resistance of complex channel geometries and trapped droplets

机译:微流体旁路测量:复杂通道几何形状的流动阻力高度平行化测量和被困液滴

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Current lithography methods allow facile fabrication of microfluidic conduits where not only the shape of the bounding walls can be arbitrarily varied but also the internal conduit space can be laden with a variety of microstructures and wetting properties. This virtually infinite design space of microfluidic geometries brings in the challenge of how to quantify fluid resistance in a large number of microfluidic conduits, while maintaining operational simplicity. We report a versatile experimental technique referred to as microfluidic bypass manometry for measurement of pressure drop versus flow rate (Delta P-Q) relations in a parallelized manner. The technique involves introducing co-flowing laminar streams into a microfluidic network that contains a series of loops, where each loop is comprised of a test geometry and a bypass channel as a flow-rate sensing element. We optimize the network geometry and present operational considerations for microfluidic bypass manometry. To demonstrate the power of our technique, we used single-phase fluids and measured Delta P-Q relations simultaneously for forty test geometries ranging from linear to contraction-expansion to serpentine to pillar-laden microchannels. To expand the capabilities of the method, we measured Delta P-Q relations for similar-sized oil droplets trapped in microcavities where the cavity geometry spans from prisms of 3-10 sides to circular disks. We found in all cases, the Delta P-Q relation is nonlinear and the flow resistance of droplets is sensitive to confinement. At high flow rates, the drop resistance depends on the cavity geometry and is higher in a triangular prism compared to a circular disk. We compared the measured flow resistance of single-phase fluids and droplets in different microfluidic geometries to that from computational fluid dynamics simulations and found them to be in excellent agreement. Given the simplicity and versatility of the microfluidic bypass manometry method, we anticipate that it may find broad application in several areas including design of lab-on-chip devices, laminar drag reduction and mechanics of deformable particles.
机译:当前的光刻方法允许体内制造微流体导管,不仅可以任意变化的边界壁的形状,而且内部导管空间也可以装载各种微结构和润湿性能。这种微流体几何形状的几乎无限的设计空间带来了如何定量大量微流体导管中的流体阻力的挑战,同时保持操作简单。我们报告了一种通用的实验技术,称为微流体旁路测量测量,用于测量压力下降与流速(Delta P-Q)关系以并行化的方式。该技术涉及将共流的层流引入包含一系列环的微流体网络中,其中每个环包括测试几何形状和作为流量传感元件的旁路通道。我们优化网络几何形状,并对微流体旁路测量进行目前的操作考虑。为了展示我们技术的力量,我们使用单相流体和测量的ΔP-Q关系,同时用于四十个试验几何形状,范围从线性到收缩 - 膨胀到蛇形到柱子微通道。为了扩展该方法的能力,我们测量了在微腔中捕获的类似尺寸的油滴的ΔP-Q关系,其中腔几何形状跨越3-10侧面的棱镜到圆盘。我们发现在所有情况下,Delta P-Q关系是非线性的,并且液滴的流动阻力对限制敏感。在高流量速率下,与圆盘相比,下降电阻取决于腔几何形状,并且三角形棱镜中的三角形棱镜更高。我们将单相流体和液滴的测量流动性与计算流体动力学模拟进行了比较,并发现它们具有很好的一致性。鉴于微流体旁路测量方法的简单性和多功能性,我们预计它可能在几个区域中找到广泛的应用,包括芯片片装置的设计,层流阻力和可变形颗粒的机械。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号