首页> 外文期刊>Lab on a chip >Temperature change rate actuated bubble mixing for homogeneous rehydration of dry pre-stored reagents in centrifugal microfluidics
【24h】

Temperature change rate actuated bubble mixing for homogeneous rehydration of dry pre-stored reagents in centrifugal microfluidics

机译:温度变化率致动泡泡混合用于离心机微流体中干燥预储存的干燥预储存的均匀再水合作用

获取原文
获取原文并翻译 | 示例
           

摘要

In centrifugal microfluidics, dead volumes in valves downstream of mixing chambers can hardly be avoided. These dead volumes are excluded from mixing processes and hence cause a concentration gradient. Here we present a new bubble mixing concept which avoids such dead volumes. The mixing concept employs heating to create a temperature change rate (TCR) induced overpressure in the air volume downstream of mixing chambers. The main feature is an air vent with a high fluidic resistance, representing a low pass filter with respect to pressure changes. Fast temperature increase causes rapid pressure increase in downstream structures pushing the liquid from downstream channels into the mixing chamber. As air further penetrates into the mixing chamber, bubbles form, ascend due to buoyancy and mix the liquid. Slow temperature/pressure changes equilibrate through the high fluidic resistance air vent enabling sequential heating/cooling cycles to repeat the mixing process. After mixing, a complete transfer of the reaction volume into the downstream fluidic structure is possible by a rapid cooling step triggering TCR actuated valving. The new mixing concept is applied to rehydrate reagents for loop-mediated isothermal amplification (LAMP). After mixing, the reaction mix is aliquoted into several reaction chambers for geometric multiplexing. As a measure for mixing efficiency, the mean coefficient of variation ((CV) over bar, n = 4 LabDisks) of the time to positivity (t(p)) of the LAMP reactions (n = 11 replicates per LabDisk) is taken. The (CV) over bar of the t(p) is reduced from 18.5% (when using standard shake mode mixing) to 3.3% (when applying TCR actuated bubble mixing). The bubble mixer has been implemented in a monolithic fashion without the need for any additional actuation besides rotation and temperature control, which are needed anyhow for the assay workflow.
机译:在离心机微流体中,几乎不避免在混合室下游的阀中的死体积。这些死体积被排除在混合过程之外,因此导致浓度梯度。在这里,我们提出了一种新的泡沫混合概念,避免了这种死亡体积。混合概念采用加热以在混合室下游的空气量中产生温度变化率(TCR)诱导的超压。主要特征是具有高流体电阻的通风口,表示相对于压力变化的低通滤波器。快速升温导致从下游通道推入混合室中的下游结构的快速增加。由于空气进一步渗透到混合室中,气泡形式,由于浮力而上升并混合液体。慢温度/压力变化通过高流体阻力通气通气通气通气,使能量加热/冷却循环能够重复混合过程。混合后,通过快速冷却步骤触发TCR致动阀,可以将反应体积完全转移到下游流体结构中。新的混合概念应用于再水化试剂进行环介质的等温扩增(灯)。混合后,反应混合物等来分为几何多路复用的几个反应室。作为混合效率的措施,拍摄灯反应的阳性阳性(P))的平均变化系数((CV),N = 4 Labdisks)(每拉差异的N = 11重复)。 T(P)的杆上的(CV)从18.5%(使用标准摇动模式混合时)降低至3.3%(在施加TCR致动泡沫混合时)。泡沫混合器以整体方式实施,而不需要旋转和温度控制之外的任何额外致动,这是无论如何都需要用于测定工作流程。

著录项

  • 来源
    《Lab on a chip》 |2018年第2期|共9页
  • 作者单位

    Univ Freiburg Dept Microsyst Engn IMTEK Lab MEMS Applicat Georges Koehler Allee 103 D-79110 Freiburg Germany;

    Univ Freiburg Dept Microsyst Engn IMTEK Lab MEMS Applicat Georges Koehler Allee 103 D-79110 Freiburg Germany;

    Univ Freiburg Dept Microsyst Engn IMTEK Lab MEMS Applicat Georges Koehler Allee 103 D-79110 Freiburg Germany;

    Hahn Schickard Georges Koehler Allee 103 D-79110 Freiburg Germany;

    Univ Freiburg Dept Microsyst Engn IMTEK Lab MEMS Applicat Georges Koehler Allee 103 D-79110 Freiburg Germany;

    Univ Freiburg Dept Microsyst Engn IMTEK Lab MEMS Applicat Georges Koehler Allee 103 D-79110 Freiburg Germany;

    Univ Freiburg Dept Microsyst Engn IMTEK Lab MEMS Applicat Georges Koehler Allee 103 D-79110 Freiburg Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学实验(实验化学);生物化学;生物科学;化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号