...
首页> 外文期刊>Lab on a chip >Phenotyping of the thrashing forces exerted by partially immobilized C. elegans using elastomeric micropillar arrays
【24h】

Phenotyping of the thrashing forces exerted by partially immobilized C. elegans using elastomeric micropillar arrays

机译:利用弹性体微米阵列通过部分固定的C.杆状杆菌施加的捶打力的表型

获取原文
获取原文并翻译 | 示例

摘要

As a simple model organism, C. elegans plays an important role in gaining insight into the relationship between bodily thrashing forces and biological effects, such as disease and aging, or physical stimuli, like touch and light. Due to their similar length scale, microfluidic chips have been extensively explored for use in various biological studies involving C. elegans. However, a formidable challenge still exists due to the complexity of integrating external stimuli (chemical, mechanical or optical) with free-moving worms and subsequent imaging on the chip. In this report, we use a microfluidic device to partially immobilize a worm, which allows for measurements of the relative changes in the thrashing force under different assay conditions. Using a device adapted to the natural escape-like coiling response of a worm to immobilization, we have quantified the relative changes in the thrashing force during different developmental stages (L1, L3, L4, and young adult) and in response to various glucose concentrations and drug treatment. Our findings showed a loss of thrashing force following the introduction of glucose into a wild type worm culture that could be reversed upon treatment with the type 2 diabetes drug metformin. A morphological study of the actin filament structures in the body wall muscles provided supporting evidence for the force measurement data. Finally, we demonstrated the multiplexing capabilities of our device through recording the thrashing activities of eight worms simultaneously. The multiplexing capabilities and facile imaging available using our device open the door for high-throughput neuromuscular studies using C. elegans.
机译:作为一种简单的模型生物,C.埃贝朗斯在获得身体捶打力和生物学效应的关系中发挥着重要作用,例如疾病和老化,或物理刺激,如触摸和光。由于其相似的长度规模,微流体芯片已被广泛探索用于涉及C.秀丽隐杆线的各种生物学研究。然而,由于将外部刺激(化学,机械或光学)与自由蠕虫和随后的芯片成像集成了外部刺激(化学,机械或光学)和随后的成像,因此仍存在强大挑战仍然存在。在本报告中,我们使用微流体装置部分固定蠕虫,这允许在不同的测定条件下测量捶打力的相对变化。使用适用于蜗杆的天然逃生样卷绕响应的装置来固定,我们已经定量了在不同发育阶段(L1,L3,L4和年轻成人)期间的延长力的相对变化,并响应各种葡萄糖浓度和药物治疗。我们的研究结果表明,在将葡萄糖引入野生型蠕虫培养后,在用2型糖尿病药物二甲双胍治疗后,葡萄糖造成了延迟的延迟力。体壁肌肉中的肌动蛋白灯丝结构的形态学研究为力测量数据提供了支持证据。最后,我们通过同时记录八蠕虫的延长活动来证明我们的设备的多路复用能力。使用我们的设备可以使用我们的设备为高通量神经肌肉研究的多路复用能力和容易成像使用C. Elgans。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号