首页> 外文期刊>New biotechnology >Combinatorial synthetic pathway fine-tuning and cofactor regeneration for metabolic engineering of Escherichia coli significantly improve production of D-glucaric acid
【24h】

Combinatorial synthetic pathway fine-tuning and cofactor regeneration for metabolic engineering of Escherichia coli significantly improve production of D-glucaric acid

机译:大肠杆菌代谢工程的组合合成途径微调和辅助因子再生显着改善了D-葡萄糖酸的生产

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

D-glucaric acid (GA) has been identified as among promising biotechnological alternatives to oil-based chemicals. GA and its derivatives are widely used in food additives, dietary supplements, drugs, detergents, corrosion inhibitors and biodegradable materials. The increasing availability of a GA market is improving the cost-effectiveness and efficiency of various biosynthetic pathways. In this study, an engineered Escherichia coli strain GA10 was constructed by systematic metabolic engineering. This involved redirecting metabolic flux into the GA biosynthetic pathways, blocking the conversion pathways of D-glucuronic acid (GlcA) and GA into by-products, introducing an in situ NAD+ regeneration system and fine-tuning the activity of the key enzyme, myo-inositol oxygenase (Miox). Subsequently, the culture medium was optimized to achieve the best performance of the GA10 strain. GA was produced at 5.35 g/L (extracellular and intracellular), with a maximized yield of similar to 0.46 mol/mol on D-glucose and glycerol, by batch fermentation. This work demonstrates efficient biosynthetic pathways of GA in E. coli by metabolic engineering and should accelerate the application of GA biosynthetic pathways in industrial processes.
机译:已经确定了D-葡萄糖酸(GA)作为有前途的石油化学品的有前途的生物技术替代品。 GA及其衍生物广泛用于食品添加剂,膳食补充剂,药物,洗涤剂,腐蚀抑制剂和可生物降解材料。 GA市场的增加可用性正在提高各种生物合成途径的成本效益和效率。在该研究中,通过系统代谢工程构建了工程化的大肠杆菌菌株GA10。这涉及将代谢通量重定向到GA生物合成途径中,使D-葡萄糖醛酸(GLCA)和GA的转化途径阻塞,副产物,介绍原位NAD +再生系统,并进行微调酶,肌肉的活动肌醇氧合酶(MIOx)。随后,优化了培养基以实现GA10应变的最佳性能。 Ga以5.35g / l(细胞外和细胞内)产生,通过分批发酵在D-葡萄糖和甘油上的最大化产率与0.46mol / mol。该作品通过代谢工程说明了大肠杆菌中GA的高效生物合成途径,并应加速GA生物合成途径在工业过程中的应用。

著录项

  • 来源
    《New biotechnology》 |2020年第1期|共8页
  • 作者单位

    South China Univ Technol Sch Food Sci &

    Engn Lab Appl Biocatalysis 381 Wushan Rd Guangzhou 510640 Peoples R China;

    South China Univ Technol Sch Food Sci &

    Engn Lab Appl Biocatalysis 381 Wushan Rd Guangzhou 510640 Peoples R China;

    South China Univ Technol Sch Food Sci &

    Engn Lab Appl Biocatalysis 381 Wushan Rd Guangzhou 510640 Peoples R China;

    South China Univ Technol Sch Food Sci &

    Engn Lab Appl Biocatalysis 381 Wushan Rd Guangzhou 510640 Peoples R China;

    South China Univ Technol Sch Food Sci &

    Engn Lab Appl Biocatalysis 381 Wushan Rd Guangzhou 510640 Peoples R China;

    South China Univ Technol Sch Food Sci &

    Engn Lab Appl Biocatalysis 381 Wushan Rd Guangzhou 510640 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 普通生物学;
  • 关键词

    Platform chemical; Systematic metabolic engineering; RBS optimization; Self-sufficient; Microbial fermentation;

    机译:平台化学;系统代谢工程;RBS优化;自给自足;微生物发酵;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号