...
首页> 外文期刊>Neural Networks: The Official Journal of the International Neural Network Society >Modeling place cells and grid cells in multi-compartment environments: Entorhinal-hippocampal loop as a multisensory integration circuit
【24h】

Modeling place cells and grid cells in multi-compartment environments: Entorhinal-hippocampal loop as a multisensory integration circuit

机译:多舱环境中的建模区电池和网格单元:Entorlinal-Hippampal循环作为多思科集成电路

获取原文
获取原文并翻译 | 示例
           

摘要

Hippocampal place cells and entorhinal grid cells are thought to form a representation of space by integrating internal and external sensory cues. Experimental data show that different subsets of place cells are controlled by vision, self-motion or a combination of both. Moreover, recent studies in environments with a high degree of visual aliasing suggest that a continuous interaction between place cells and grid cells can result in a deformation of hexagonal grids or in a progressive loss of visual cue control over grid fields. The computational nature of such a bidirectional interaction remains unclear. In this work we present a neural network model of the dynamic interaction between place cells and grid cells within the entorhinal-hippocampal processing loop. The model was tested in two recent experimental paradigms involving environments with visually similar compartments that provided conflicting evidence about visual cue control over self-motion-based spatial codes. Analysis of the model behavior suggests that the strength of entorhinal-hippocampal dynamical loop is the key parameter governing differential cue control in multi-compartment environments. Moreover, construction of separate spatial representations of visually identical compartments required a progressive weakening of visual cue control over place fields in favor of self-motion based mechanisms. More generally our results suggest a functional segregation between plastic and dynamic processes in hippocampal processing. (C) 2019 The Author( s). Published by Elsevier Ltd.
机译:通过整合内部和外部感官线索,据认为,海马的地方细胞和跑车网格细胞通过整合内部和外部感官线索来形成空间的表示。实验数据表明,不同的地方小区的不同子集由视觉,自动运动或两者的组合控制。此外,最近在具有高度视觉混叠的环境中的研究表明,地方电池和网格电池之间的连续交互可以导致六边形网格的变形或在网格领域的视觉提示控制的逐步丧失。这种双向相互作用的计算性质仍不清楚。在这项工作中,我们介绍了在Entorlinal-hippampal处理回路内的位置细胞和网格单元之间的动态相互作用的神经网络模型。该模型在最近的两个实验范式中测试了涉及具有视觉上类似隔间的环境的实验范式,该内容提供了关于基于自动运动的空间代码的视觉提示控制的矛盾的证据。模型行为的分析表明,Entorlinal-hippampAl动力学环的强度是控制多隔室环境中的差分提示控制的关键参数。此外,在视觉上相同的隔室的单独空间表示的构建需要对视觉提示控制的逐步弱化,从而支持基于自动运动的机制。更一般地,我们的结果表明了海马加工中塑料和动态过程之间的功能性偏析。 (c)2019年作者。 elsevier有限公司出版

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号