首页> 外文期刊>Nature protocols erecipes for researchers >Accessing crystal-crystal interaction forces with oriented nanocrystal atomic force microscopy probes
【24h】

Accessing crystal-crystal interaction forces with oriented nanocrystal atomic force microscopy probes

机译:用定向纳米晶原子力显微镜探针进入晶体晶体相互作用力

获取原文
获取原文并翻译 | 示例
           

摘要

Biominerals serve as critical structures of living systems and play important roles in biochemical processes. Understanding their crystallization mechanisms is therefore central to many areas of biology, biogeoscience, and biochemistry. Some biominerals, such as bone and dentin, are hierarchical nanocomposite structures constructed by sequential addition of individual oriented nanocrystals. The driving forces that enable this oriented assembly are still poorly understood, with advances in understanding limited in part by the availability of techniques that can precisely measure the delicate interactions between nanocrystals as a function of their separation distance and mutual orientation. Here, we provide a comprehensive protocol for (i) fabricating oriented single-nanocrystal atomic force microscopy (AFM) probes using focused ion beam (FIB) milling and (ii) performing oriented nanocrystal interaction force measurements using dynamic force spectroscopy (DFS)-based AFM and environmental transmission electron microscopy (ETEM)-AFM techniques. We illustrate how to fabricate oriented nanocrystal force probes using commercial bulk crystals or nano/microcrystals of calcite, zinc oxide, and rutile. The typical protocol for fabricating one AFM crystal probe takes 2-3 h. In addition, we illustrate how to quantify the direction-specific interaction forces for a given pair of interacting oriented nanocrystal faces, The methods are fully transferrable to other minerals of interest, such as the apatites constituting bone minerals. This allows researchers across many fields to measure and understand particle-based crystallization processes.
机译:生物体作为生物系统的关键结构,并在生化过程中发挥重要作用。因此,理解它们的结晶机制是生物学,生物核心和生物化学的许多领域的核心。一些生物体,例如骨和牙本质,是通过顺序添加个体取向的纳米晶体构成的分层纳米复合材料结构。使得这一定向组件能够理解的驱动力仍然很差,并且在理解的进步方面有所限制,部分通过可以在其分离距离和相互取向的函数中精确地测量纳米晶体之间的微小相互作用。在这里,我们提供了一种综合方案,用于(i)使用聚焦离子束(FIB)铣削的定向单纳米晶体原子力显微镜(AFM)探针,并使用动态力谱(DFS)进行定向的纳米晶间相互作用力测量AFM和环保透射电子显微镜(ETEM)-AFM技术。我们说明了如何使用方解石,氧化锌和金红石的商业散装晶体或纳米/微晶来制造定向的纳米晶体力探针。制造一个AFM晶体探针的典型方案需要2-3小时。另外,我们说明了如何量化给定对给定的对定向纳米晶体面的方向特异性相互作用力,该方法完全可转移到其他感兴趣的矿物质,例如构成骨矿物的磷灰石。这允许在许多领域的研究人员测量和理解基于粒子的结晶过程。

著录项

  • 来源
  • 作者单位

    Pacific Northwest Natl Lab Phys &

    Computat Sci Directorate Richland WA 99354 USA;

    Univ Pittsburgh Dept Mech Engn &

    Mat Sci Pittsburgh PA USA;

    Pacific Northwest Natl Lab Environm Mol Sci Lab Richland WA USA;

    Pacific Northwest Natl Lab Environm Mol Sci Lab Richland WA USA;

    Pacific Northwest Natl Lab Environm Mol Sci Lab Richland WA USA;

    Univ Pittsburgh Dept Mech Engn &

    Mat Sci Pittsburgh PA USA;

    Pacific Northwest Natl Lab Environm Mol Sci Lab Richland WA USA;

    Pacific Northwest Natl Lab Phys &

    Computat Sci Directorate Richland WA 99354 USA;

    Pacific Northwest Natl Lab Phys &

    Computat Sci Directorate Richland WA 99354 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号