...
首页> 外文期刊>Nature nanotechnology >Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution
【24h】

Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution

机译:通过软夹紧和耗散稀释的超级机械谐振器

获取原文
获取原文并翻译 | 示例
           

摘要

The small mass and high coherence of nanomechanical resonators render them the ultimate mechanical probe, with applications that range from protein mass spectrometry and magnetic resonance force microscopy to quantum optomechanics. A notorious challenge in these experiments is the thermomechanical noise related to the dissipation through internal or external loss channels. Here we introduce a novel approach to define the nanomechanical modes, which simultaneously provides a strong spatial confinement, full isolation from the substrate and dilution of the resonator material's intrinsic dissipation by five orders of magnitude. It is based on a phononic bandgap structure that localizes the mode but does not impose the boundary conditions of a rigid clamp. The reduced curvature in the highly tensioned silicon nitride resonator enables a mechanical Q > 10(8) at 1 MHz to yield the highest mechanical Qf products (>10(14) Hz) yet reported at room temperature. The corresponding coherence times approach those of optically trapped dielectric particles. Extrapolation to 4.2 K predicts quanta per milliseconds heating rates, similar to those of trapped ions.
机译:纳米力学谐振器的小质量和高相干使它们使其成为极限的机械探针,其具有从蛋白质质谱和磁共振力显微镜到量子光学力学的应用。这些实验中的臭名昭着的挑战是通过内部或外部损耗通道耗散的热机械噪声。在这里,我们介绍一种新颖的方法来定义纳米机械模式,该方法同时提供强的空间限制,从基板完全隔离,并稀释谐振器材料的内在耗散五个数量级。它基于位于定位模式但不施加刚性夹具的边界条件的声音带隙结构。高度张紧的氮化硅谐振器中的曲率降低使机械Q> 10(8)在1MHz下能够产生最高的机械QF产品(> 10(14)Hz),但在室温下报道。相应的相干时间方法接近光瓣介电颗粒的那些。外推至4.2k预测Quanta每毫秒的加热速率,类似于捕获的离子。

著录项

  • 来源
    《Nature nanotechnology》 |2017年第8期|共9页
  • 作者单位

    Univ Copenhagen Niels Bohr Inst Blegdamsvej 17 DK-2100 Copenhagen Denmark;

    Univ Copenhagen Niels Bohr Inst Blegdamsvej 17 DK-2100 Copenhagen Denmark;

    Univ Copenhagen Niels Bohr Inst Blegdamsvej 17 DK-2100 Copenhagen Denmark;

    Univ Copenhagen Niels Bohr Inst Blegdamsvej 17 DK-2100 Copenhagen Denmark;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 特种结构材料;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号