首页> 外文期刊>Nature nanotechnology >Microwave amplification in a magnetic tunnel junction induced by heat-to-spin conversion at the nanoscale
【24h】

Microwave amplification in a magnetic tunnel junction induced by heat-to-spin conversion at the nanoscale

机译:通过在纳米尺度的热到旋转转换诱导的磁隧道结中的微波扩增

获取原文
获取原文并翻译 | 示例
           

摘要

Heat-driven engines are hard to realize in nanoscale machines because of efficient heat dissipation(1). However, in the realm of spintronics, heat has been employed successfully-for example, heat current has been converted into a spin current in a NiFe vertical bar Pt bilayer system(2), and Joule heating has enabled selective writing in magnetic memory arrays(3). Here, we use Joule heating in nanoscale magnetic tunnel junctions to create a giant spin torque due to a magnetic anisotropy change. Efficient conversion from heat dynamics to spin dynamics is obtained because of a large interfacial thermal resistance at an FeB vertical bar MgO interface. The heat-driven spin torque is equivalent to a voltage-controlled magnetic anisotropy(4,5) of approximately 300 fJ V-1 m(-1), which is more than twice the value reported in a (Co) FeB vertical bar MgO system(6,7). We demonstrate an electric microwave amplification gain of 20% in a d.c. biased magnetic tunnel junction as a result of this spin torque. While electric d.c. power amplification in spintronic devices has been realized previously(8), the microwave amplification was limited to relatively small amplification gains (G = radiofrequency output voltage/radiofrequency input voltage) and has never exceeded 1 (refs(9-13)). A magnetic tunnel junction driven by radiofrequency spin transfer torque using ferromagnetic resonance enabled a relatively large gain of G approximate to 0.55 (ref. (12)). Furthermore, radiofrequency spin waves were tuned by the spin transfer effect(14,15). The heat-driven giant spin torque in the FeB vertical bar MgO16,17 magnetic tunnel junction, which shows a large magnetization precession and resistance oscillation under a d.c. bias, overcomes the above limitations and provides a gain larger than 1.
机译:由于有效的散热(1),热驱动发动机很难在纳米级机器中实现。然而,在闪光灯的领域中,已经成功使用了热量 - 例如,热电流已被转换成NiFe垂直杆PT双层系统(2)中的旋转电流,并且焦耳加热使得能够在磁存储器阵列中选择性写入( 3)。在这里,我们在纳米级磁隧道连接中使用焦耳加热,以产生由于磁各向异性变化而产生的巨型自旋扭矩。由于FEB垂直条MgO接口处具有大的界面热阻,获得了从热动力学到旋转动力学的有效转换。热驱动的旋转扭矩相当于约300 fjV-1m(-1)的电压控制的磁各向异性(4,5),其大于A(CO)2月垂直条MgO中所报告的值的两倍。系统(6,7)。我们展示了D.C的电气微波扩增增益为20%。由于这种自旋扭矩而偏置磁隧道结。虽然电气D.C.旋转式装置中的功率放大已经实现先前(8),微波放大限制为相对较小的放大增益(G =射频输出电压/射频输入电压),并且从未超过1(参考文献(9-13))。使用铁磁共振的射频自旋转移扭矩驱动的磁隧道结使得G近似值的相对大的G增加到0.55(参考文献(12))。此外,通过旋转转移效果(14,15)调节射频旋转波。在2月垂直条MgO16,17磁隧道结中的热驱动巨型旋转扭矩,其显示在D.C中的大磁化预测和电阻振荡。偏见,克服了上述限制并提供大于1的增益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号