...
首页> 外文期刊>Nature cell biology >Segregation of mitochondrial DNA heteroplasmy through a developmental genetic bottleneck in human embryos
【24h】

Segregation of mitochondrial DNA heteroplasmy through a developmental genetic bottleneck in human embryos

机译:通过人胚胎的发育遗传瓶颈分离线粒体DNA异质粒子

获取原文
获取原文并翻译 | 示例
           

摘要

Mitochondrial DNA (mtDNA) mutations cause inherited diseases and are implicated in the pathogenesis of common late-onset disorders, but how they arise is not clear(1,2). primordial germ cells (PGCs) within healthy female human embryos. Isolated PGCs have a profound reduction in mtDNA content, with discrete mitochondria containing similar to 5 mtDNA molecules. Single-cell deep mtDNA sequencing of in vivo human female PGCs showed rare variants reaching higher heteroplasmy levels in late PGCs, consistent with the observed genetic bottleneck. We also saw the signature of selection against non-synonymous protein-coding, tRNA gene and D-loop variants, concomitant with a progressive upregulation of genes involving mtDNA replication and transcription, and linked to a transition from glycolytic to oxidative metabolism. The associated metabolic shift would expose deleterious mutations to selection during early germ cell development, preventing the relentless accumulation of mtDNA mutations in the human population predicted by Muller's ratchet. Mutations escaping this mechanism will show shifts in heteroplasmy levels within one human generation, explaining the extreme phenotypic variation seen in human pedigrees with inherited mtDNA disorders.
机译:线粒体DNA(MTDNA)突变导致遗传疾病,并涉及常见的晚期发病障碍的发病机制,但它们的发病机制是尚不清楚的(1,2)。原始生殖细胞(PGCs)在健康女性人胚胎内。孤立的PGC在MTDNA含量下具有深远的减少,具有离散的线粒体,其含有类似于5个MTDNA分子。体内人雌性PGC的单细胞深层MTDNA测序显示出罕见的变体达到晚期PGC的更高的异质水平,与观察到的遗传瓶颈一致。我们还看到了对非同义蛋白编码,TRNA基因和D圈变体的选择的签名,伴随着涉及MTDNA复制和转录的基因的渐进性上调,并与从甘露糖酵母转变为氧化代谢的转变。在早期生殖细胞发育期间,相关的代谢转变将暴露有害突变在选择期间选择,防止MTDNA突变在穆勒棘轮预测的人口中的无情积累。逃离该机制的突变将显示一代人类生成内的异质水平的变化,解释了具有遗传的MTDNA疾病的人谱系中看到的极端表型变异。

著录项

  • 来源
    《Nature cell biology》 |2018年第2期|共10页
  • 作者单位

    Univ Cambridge MRC Mitochondrial Biol Unit Cambridge England;

    Newcastle Univ Wellcome Trust Ctr Mitochondrial Res Inst Med Genet Newcastle Upon Tyne Tyne &

    Univ Cambridge Wellcome Trust Med Res Council Stem Cell Inst Cambridge England;

    Univ Cambridge MRC Mitochondrial Biol Unit Cambridge England;

    Univ Cambridge Wellcome Trust Canc Res UK Gurdon Inst Cambridge England;

    Univ Cambridge Wellcome Trust Canc Res UK Gurdon Inst Cambridge England;

    Univ Cambridge Wellcome Trust Med Res Council Stem Cell Inst Cambridge England;

    GENERA Clin Valle Giulia Ctr Reprod Med Rome Italy;

    Kings Coll London Fac Life Sci &

    Med Div Womens Hlth London England;

    Univ Cambridge Wellcome Trust Med Res Council Stem Cell Inst Cambridge England;

    Univ Cambridge Wellcome Trust Med Res Council Stem Cell Inst Cambridge England;

    Newcastle Univ Human Dev Biol Resource Inst Med Genet Newcastle Upon Tyne Tyne &

    Wear England;

    Newcastle Univ Ctr Bacterial Cell Biol Inst Cell &

    Mol Biosci Newcastle Upon Tyne Tyne &

    Wear;

    Kings Coll London Fac Life Sci &

    Med Div Womens Hlth London England;

    Kyoto Univ Grad Sch Med Dept Anat &

    Cell Biol Kyoto Japan;

    Kings Coll London Fac Life Sci &

    Med Div Womens Hlth London England;

    Univ Cambridge Wellcome Trust Canc Res UK Gurdon Inst Cambridge England;

    Univ Cambridge MRC Mitochondrial Biol Unit Cambridge England;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 细胞生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号